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Introduction 
 
Thanks to Mustafa 
 
Related Document: [ Visualization4Costs ]  
 
Optimization is a technology in machine learning to get the “best” possible result for a 
parameter. Important to know is the dual usability for classical, hybrid or quantum learning 
models ( computation ). The basic idea behind is to find the minimal or optimal solution for a 
defined problem or way. 
 
The concept of optimization like in a beginner calculus course. It’s solving for a maximum or 
minimum of a given function. 
 
“Since variational algorithms have shown a lot of promise in terms of near-term, NISQ 
computations, it’s important to find better ways to optimize them.” - Lana Bozanic  
 
The gradient descent is the Slope or rise  
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SGD 

Comparison: 
SDG,Momentum,NAG,AdaGrad,AdaDelta,RMSprop Compare 

What are Optimizer? 
 

Optimizers are the part of the calculation which are able to change the parameters from a 
Quantum-,  Classical- or Hybrid-System of the Machine Learning. The Optimizer Algorithm 
will change this parameter automatically  and can act in different access points of the 
calculation. 
The Core function of an optimizer is to find the optimal parameters with the minimal cost for 
the parameter calculation. 
 
This Function is used to minimize an error function  called “loss function” and for maximize  
the efficiency of production. If you don't know about the “loss function” yet, please read the 
chapter “Loss Function” now. 
 
Depending on the model the optimizer is a mathematical function with learnable parameters 
like the “Weight” and “Bias” 
 
Generally said the optimizer tries to predict the result and find the positive or negative 
change in comparison with the previous prediction. This will give a difference in the 
parameters which the optimizer will now compare and improve. 
The Mathematical view to this is abs(y_predicted – y). The first prediction has no important 
influence if it is too high or too low. The Result from this in comparison is the main 
information. ( For some algorithms this could be a significant  feature ! ) 
 
Here a example as a linear explainable correlation between explanatory variable and 
response variable: 
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Mean squared error 
The MSE is the main part most algorithms with the loss function.  
To calculate MSE, you take the difference between your predictions and the ground 
truth, square it, and average it out across the whole dataset. 
 

Example  
@source [ LINK ] 
 
y: the actual prediction from the calculation 
y_prediction: the result with the parameter which gives us the way to optimize 
**2: Using the squared difference allow us to compare negative values  like an amount of a 
value 
sum_squared_error:  
 
 
 
def MSE(y_predicted, y): 

squared_error = (y_predicted - y) ** 2 
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sum_squared_error = np.sum(squared_error) 
mse = sum_squared_error / y.size 

return(mse) 
 

Likelihood loss 
 
A commonly used function for classification problems.This Function uses as base the 
probability for each input example and multiplies them. This method is helpfull to compare 
models  
“The likelihood function (often simply likelihood), occasionally called the plausibility function 
or the conjecture function,[1] is a special real-valued function in mathematical statistics that 
is obtained from a probability density function or a count density by treating a parameter of 
the density as a variable. Central use of the likelihood function is the construction of 
estimator functions by the maximum likelihood method. In addition, other functions such as 
the log-likelihood function and the score function are derived from it, which are used, for 
example, as auxiliary functions in the maximum likelihood method or for the construction of 
optimality criteria in estimation theory.” - wikipedia [ LINK ] 
 
Example: 
Outputs probabilities of [0.4, 0.6, 0.9, 0.1] for the ground truth labels of [0, 1, 1, 0] 
 

Log loss (cross entropy loss) 
 
Like the Likelihood-Function mainly used for binary classification with the mathematical 
definition: 

 
This is exactly the same formula as the regular likelihood function, but with logarithms added 
in it. 
 
@article [ LINK ] 
 

Summary 
 
On one side the loss function is a static way for the static representation for the performance 
of you model. Additionally it shows you how the data of your model fit. Each learning 
machine learning algorithm is using a loss function in the process of optimization or finding 
the best parameters ( weights ) for the dataset. 
 
In linear regression the MSE is used to find for each set of data the related “cost”. The 
optimizer algorithm model ( as example gradient descent ) then optimize the MSE functions 
to make it “lowest” costs possible   
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More Accuracy with Optimizer 
Additional for the model accuracy the optimizer should have a highly important meaning for 
our works in machine learning.  

 

 

Differences in QML and classical maschine learning 
 
@paper [ Quantum Natural Gradient Descent ] 
 
 
The difference of the QML ( QNGD ) is the Usage of the parame trized quantum space with 
more efficiency for optimization. 
 
The basis Gradient Descent is writen like this: 

 
parameter: 
 
θ_(n+1) new parameter 
θ_n current parameter 
 
      “step-size” [ movement of the parameter ] 
 
∇L(θ)  the gradient in respect to our cost function 
 
Note: We subtract from the actual parameter the gradient multiplied with  steps sizes. 
The Gradient gives the direction the steepest ascent. This is the reason why the negative 
version is needed to get to the minimum ( steepest descent ) instead of the given direction 
of the steepest ascent. The general usage of gradient descent is to optimize the parameters 
to move to the minima and reduce the costs of the function space. 
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Classical Natural Gradient Descent 
 
The classical natural gradient descent is nearly a regular gradient descent with the 
difference in optimizing the parameter space by changing the the output distribution space. 
In most times this is leading to an efficient optimization. 
 
For this the Scale has to be changed to a different metric. The regular gradient descent is 
using the euclidean metric to measure the distance between the parameters, which does not 
fit to the output distribution. 

 
 
from https://wiseodd.github.io/techblog/2018/03/14/natural-gradient/ 
The red line shows the euclidean metric in the gaussian curve with the same distance. 
The overlap comparison of the first plot and the second one gives us the idea of the needed 
transformation. This makes the work with a euclidean parameter room dangerous for our 
result and learning accuracy if we wish to have a realistic accuracy in the output distribution. 
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To measure the difference in two output distributions, it is needed to use the Kullback Leibler 
( KL ) divergence. 
 
The Kullback Leibler divergence measures the overlap and closeness between the two 
output distributions.  
The KLD is no metric by it self but has a approximately symmetric in specific cases and is 
useable for us in this cases. 
 
The KLD let us use the distribution space and not the parameter space. The focus is the 
output distribution of our model which enable us the usage of the KLD. 
 
The Fisher Information Matrix is an additional important tool to know about. 
The KL-Divergence is the optimization of the distribution space.The Fisher information matrix 
is the way to represent this. 
 
The resulting formula for the natural gradient descent is : 

 
 
It is similar to the classical gradient descent math with the difference of the F-Inverse ( 
inverse function ) behind the “step size”. Now we are able to calculate in the the distribution 
space rather than in the parameter space.  With The F-Inverse the density of information  
about the geometry and the control over the movement of the model in the distribution output 
is given.This calculation is now detached from the movements in the cost space. 
 

 

Quantum Natural Gradient Descent  
 
The Quantum natural gradient descent ( QNG ) based on the upper versions of the gradient 
descent methods. The QNG takes the advantage geometric properties of parameterized 
quantum states. The Fisher metric has to be changed to quantum state metric. The 
Fubini-Study-metric (or quantum fisher metric ) is used for this. 
 
This Metric is defining the classical metric to a distance within a quantum geometric space. 
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|φ(θ)⟩ initial ansatz 
 ∂|φ(θ)⟩/∂θ_i is the partial derivative of |φ(θ)⟩ with respect to θ 
 
https://medium.com/@ziyu.lili.maggie/rethinking-gradient-descent-with-quantum-natural-grad
ient-330da14f621 
 
 

 
 
Comparison in a table : [ LINK ] 
 
 

1.​ Optimizer with Pennylane: 
 

Link to pennylane Optimizer with Numpy Interface: 
 

 
1.​ AdagradOptimizer   
2.​ AdamOptimizer 
3.​ CVNeuralNetLayers ( https://arxiv.org/abs/1806.06871 ) 
4.​ MomentumOptimizer 
5.​ NesterovMomentumOptimizer 
6.​ QNGOptimizer 
7.​ QuantumMonteCarlo 
8.​ RMSPropOptimizer 
9.​ RotoselectOptimizer 
10.​RotosolveOptimizer() 
11.​ShotAdaptiveOptimizer( 
12.​Gradient Descent Optimizer 

 
VQECost  
 
     2. Optimizer with PyTorch: 

( https://pytorch.org/docs/stable/optim.html ) 
 

1.​ Adadelta 
2.​ Adagrad 
3.​ RMSprop 
4.​ Adam 
5.​ AdamW 
6.​ SparseAdam 
7.​ Adamax 
8.​ ASGD 
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9.​ LBFGS 
10.​NAdam 
11.​RAdam 
12.​Rprop 
13.​SGD 

 
 
 
 
 
 
 

Optimizer for Machine Learning: 

 
Lets first ask “what is a Optimizer?”. Is is a method or algorithm which helps to 
find the minimum of an error function ( loss function ) or to optimize the 
efficiency of output. 
From a technical view optimizer are mathematical functions which are 
dependent to parameters of the used model like weights and biases. 
Optimizer helps to understand the action of the weights and the learning rate 
and are able to optimize the losses. 
 
The class of optimizers can be separated in different classes. 
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Loss Function: 
 

 
Picture: [ Link ]  
 
The Loss Function is the main essence of Machine-Leanring to get from 
mathematical form to a reproducible and repeatable process of computation 
with amazing results. 

 

What is the “Loss Function”? 
Generally said the “loss function” is a method of evaluating how well the algorithm calculates 
and models the given dataset. The result from the optimizer gives you a characteristic output 
for too high loss  or small number for a good result. 
The quality of the LF is related to the model accuracy. 
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Quantum gradient transforms 
@pennylane [ LINK ] 
@pennylane [ Gradient Transformation ] 
 
The quantum gradient transformatation is a strategie for computing the gradient of a 
quantum circuit that works by transfomring the quantum circuit into one ore more gradient 
circuits. These gradient circuits, once executed and post-processed, return the gradient of 
the original circuit. Examples of quantum gradient transformation include finite-differences 
and parameter-shift-rules. 
This model provides a selection of devices-independent, differentiable qauntum gradient 
transformations.As such, these quantum gradient transforms can be used to compute the 
gradients of quantum circuits on both simulators and hardware. 
 
Gradient Transformation-Overview: 
 
finit_diff ( finit difference gradient of all gate parameters with respect to the inputs ) 
param_shift ( parameter shift gradient ) 
param_shift_cv (compute the parameter-shift gradient of all gate parameters with respect 
to its inputs )  
 

Quantum Gradients 
@pennylane [ LINK ] 

Quantum Differentiable Programming 
@pennylane [ LINK ] 
 
In quantum computing, one can automatically compute the derivatives of variational 
circuits with respect to their input parameters. Quantum differentiable programming is a 
paradigm that leverages this to make quantum algorithms differentiable, and thereby 
trainable. 
 

 
 

Gradient Descent  
 

 
The Gradient Descent is a convex Function which optimize the 
parameter iteratively. This optimize a given function to the minima for a 
local minima. . This means that the gradient descent  minimize 
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iteratively the loss function. The idea to success this algorithm is the to 
use the direction opposite of the steepest ascent. 
This depends on the derivatives of the loss function for finding minima 
and uses the complete training set to calculate the gradient of the cost 
function for the parameters. 
This uses a lot of memory and slows down by size. 
 

[ LINK ] 
 
 

     
 

Pro: 
 

1.​ lightweight of machine learning ( learning view ) 
1.​ easy to use 
2.​ lot of documentation 
3.​ nearly in each library available 

 

Contra: 
 

1.​ iterative calculation over the complete dataset ( slow ) 
2.​ need much memory 
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Learning Rate: 
 
How big and small steps the gradient descent takes towards the local 
minimum is determined by the learning rate, which indicates how fast or slow 
we are moving towards the optimum weights. 
 

 
[ LINK ] 
 
 
 

Gradient Descent - How it works 
@page [ LINK ] 
 
The Gradient Descent is an iterative process to find the minima of a function.  
If an optimization problem is not solvable deterministically we use Approximate solution. 
The goal is to maximize or minimize the function .  
Obviosly a solution of this kind has different ways to solve. This group is called the Gradient 
Descent ( GD ). This Class is a subfield of the optimization Algorithms which calculates the 
local minimum of a (convex) function by changing (iterating) the parameters of this function. 
 
 
 
 
 
 
 
 
 
 

14 

https://medium.com/mlearning-ai/optimizers-in-deep-learning-7bf81fed78a0
https://ichi.pro/de/gradientenabstieg-wie-funktioniert-es-184811793686506


 

 
 

Stochastic Gradient Descent: 
 
The SGD “Stochastic Gradient Descent” is a avariation of the normal Gradient 
Descent.The difference is the update of the model parameters one by one. 
It is not using the iterative way. it uses the complete dataset in each data as 
one step. 
 

 
 
 
Additional information: 
https://golden.com/wiki/Stochastic_gradient_descent_(SGD) 
 
 
Compare the gradient descent and the stochastic gradient descent: 

 
 
[ Link ]  

Pro: 
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●​ Frequent updating of model parameters 
●​ Less memory required. 
●​ Large datasets can be used as only one sample needs to be 

updated at a time. 
 

Contra: 
 

●​ Frequent updates can also lead to noisy gradients which increase 
rather than decrease the error. 

●​ High variation. 
●​ Frequent updates require high computational cost. 

 
 
 
 
 

 

Mini-Batch Gradient Descent: 
 
 The MBGD is using the concept of the batch gradient descent and the SGD. 
 
By splitting the traning dataset into small pieces ( batches ) and calculate th 
updates for ech of those batches. This makes the MBGD more robust then the 
stochastic gradient descent and more effective then the basic batch gradient 
descent. 
The MBGD reduce the variance of the own parameters and the convergence 
gets more stable. The Bachtes has a size from 50 till 256 examples by 
random choise. 
 
Pro: 
 

●​ It leads to more stable convergence. 
●​ More efficient gradient calculations. 
●​ Less memory required. 

 
Contra: 
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●​ Small batch gradient descent does not guarantee good convergence, 
●​ If the learning rate is too low, the convergence speed will be slow.  
●​ If it is  too high, the loss function will fluctuate or even deviate from the 

minimum value. 
●​ Learning rate constant 

 
 
 
 
 

 

SGD with Momentum ( as seen in the picture above ) 
 
By adding a term of momentum to the stochastic optimizer method  

          the function gets more inertia for the object of movement ( test point ). 
          The movement of the in front located calculation is influencing the habit 
. 
The first actualisation is used  and tuned with a resulting “smoothed” reaction. 
This stabilisation can have a positive impact of the modell. This method is 
faster trainable, because it can solve local optimization problems. 
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[ LINK ] 
 

Pro:  
●​ Momentum helps reduce noise. 
●​ An exponential weighted average is used to smooth the curve. 

 

Contra: 
●​ Additional hyperparameters are added. 
●​ Learning rate constant 

 
 
 
 

 
 

Quantum-Optimizer with pennylane: 
Gradients and Traning: [ LINK ] 
QML Gradients: [ LINK ]  
Optimizer: [ LINK ] 
 

 
 
 

AdagGradOptimizer 
 
AdaGrad(Adaptive Gradient Descent) is in comparison to the basic descent gradient 
algorithms a very flexible system. The flexibility comes from the different learning rates for 
each and every neuron and every hidden layer based on the different iterations. 
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Pro: 
●​ The learning rate changes adaptively through iterations 
●​ useable with small datasets 

 

Contra:  
●​ When the neural network is very deep, the learning rate becomes 

a very  small number, leading to the dead neuron problem. 
 
 
 
 
 
 
 
 

 

RMSprop ( Root Mean Square Propagation )  
@pennylane [ LINK ] 
RMS-Prop essentially combines Momentum and AdaGrad. RMS-Prop is a special version of 
Adagrad where the learning rate is an exponential average of the gradients rather than a 
sum. 

 
 
or 

 
 
η: stepsize 
γ: learning rate decay  
eps: offset ϵ added for numeric stability ( like Adagrad ) 
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Pro: 

●​ low configuration level 

 

Contra:  

●​ Slow Learning 

 

 

 

 

 
 

 

AdaDelta 
 
The AdaDelte is an extension to the AdaGrad algorithm with an optimized learning rate. 
It optimizes the monotony of the AdaGrad and the decreasing learning rate. 
 

Pro: 
 

●​ is using a default learning rate 
 

Contra: 
●​ needs lot of computer resources 
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Adam 

 
The Adam ( Adaptive Momentum Estiamation )  uses adaptive learning 
rates for ech paramter. It stores the decaying average ot the last 
gradients like the momentum. Similar to the RMS-Prop the decaying 
average of the lst squared gradients are used. 
On this way it is the combination of the positive part of the RMS-Prop 
and AdaDelta 
 

 
 

Pro:  

●​ easy usage 
●​ computationally efficient 
●​ little memory usage 
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GradientDescentOptimizer 
@pennylane [ LINK ] 

 
η as  an user-defined hyperparameter corresponding to step size 
 

 

LieAlgebraOptimize 
@pennylane [ LINK ]  
 
Riemannian gradient descent algorithms can be used to optimize a function directly on a 
Lie group as opposed to on a Euclidean parameter space. 
 
@paper [ LINK ] 
 

 

MomentumOptimizer 
@pennlane [ LINK ] 
The Momentum Optimizer uses an additional therm at the gradient descent. 
The Momentum Optimizer helps us to get to a local minimum faster and can find the local ( 
or global minima ) more efficient then the SGD. 

 
were a  ( accumulator ) is updated: 

 
m : momentum as a user-defined hyperparameter 
η: step size as a user-defined hyperparameter 
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[ source ] 

 
This picture above shows the 2 dimensional 
simplified problem, where the ball ( algorithm) is 
stuck nearly at the first position ( local minima ) 
instead of finding the right global minima. 
Adding the therm with a dynamic part in it helps 
to roll above the local minima. This method uses 
the temporal element as a dynamical driver 
above local minimas. 

 
The time element is adding a swing to a ball. 
This effect we call momentum. 
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( ) 
more mathematically: 

 
 
 

-​ Theta θ as a parameter  ( weight, bias or activation ) 
-​ “das” is the learning rate ( or steps ) sometime calles Alpha, ein or ε 
-​ J as the target function which we optimize ( cost- or loss-function ) 
-​ Gamma γ,a constant term. Also called the momentum, and rho ρ is also used instead 

of γ sometimes 
-​ Last change (last update) to θ is called vt 

 
This benefit to get a faster result has the price. The momentum can “kick” the messurment 
above the wished result as seen in the following picture: 

 
[ source ] 
 
 
 
@paper [ LINK ]  
@page [ LINK ] 
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NesterovMomentumOptimizer 
 
The NesterovMomentum Optimizer works like a basic Momentum Optimizer. Additionally it 
moves the shift of the current input by the Nesterov Momentum term when the computing of 
the gradient of the objective function is done. 
 
parameters:  

●​ η  as the step size 
●​ m as the momentum 

 

 

 

 

Lets use this knowledge and add it to this habit in two pictures: 
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QNGOptimizer 
@pennylane [ LINK ]  
@GitHub [ LINK ] 
@medium [ LINK ] 
@paper [ LINK ] 
The Quantum Natural Gradient  
parameters: 
 
 
Optimizer with adaptive learning rate, via calculation of the diagonal or block-diagonal 
approximation to the Fubini-Study metric tensor. A quantum generalization of natural 
gradient descent. 
 

 
here the expection value of some observable messurment on the variational quantum 
circuit  

 

 

ShotAdaptiveOptimizer 
@pennylane [ LINK ] 
 
Optimizer where the shot rate is adaptively calculated using the variances of the 
parameter-shift gradient. 
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Gradient-Free Optimizers: 
 

RotoSolveOptimizer 
@pennylane [ LINK ] 
@paper [ LINK ] 
@tutorial [ LINK ] 
@paper compare VQE:Reinforcement Learning with RotoSolver [LINK] 

 
The RotoSolve Optimizer is a gradient-free Optimizer which optimizer minimizes an 
objective function with respect to the parameters of a quantum circuit without the need 
for calculating the gradient of the function. 
 
 

 

RotoselectOptimizer 
@pennylane [ LINK ] 
Rotoselect is a gradient-free optimizer 
 
The Rotoselect optimizer minimizes an objective function with respect to the rotation 
gates and parameters of a quantum circuit without the need for calculating the gradient 
of the function.  
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Comparison: 

 
 
 

SDG,Momentum,NAG,AdaGrad,AdaDelta,RMSprop Compare 
NAG: https://github.com/numericalalgorithmsgroup/NAGPythonExamples 
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