Квантовая гипотеза Планка. Фотоэффект. Законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта.

Цель урока:

- •Показать, что законы фотоэффекта являются следствием уравнения Эйнштейна.
- •Сформулировать у учащихся знания уравнения Эйнштейна в применении для красной границы фотоэффекта.
- ◆Сформулировать физический смысл понятий: квант, фотон, красная граница фотоэффекта.
- •Научиться пользоваться уравнением Эйнштейна при решении задач, при этом развивать сообразительность и вычислительные навыки.
- Раскрыть значение этапов цикла познания природы и убедится в не уничтожимости материи и движения.
 - •Показать диалектический характер физического познания.
 - •Учить анализировать и делать выводы.
 - •Учить культуре письма.

Оборудование:

- Опорный конспект-таблица.
- Карточки с задачами-3 уровня сложности.
- Конверт "Проверь себя"
- Контракт.
- Учебник, тетрадь.

Ход урока.

1. Организационный момент.

2. Актуализация знаний (выполните тест по теме «Электромагнитные излучения»): Вариант № 1.

- 1. Какое излучение испускает любое нагретое тело даже в том случае, когда оно не светится?
 - А) Ультрафиолетовое; Б) Инфракрасное
- 2. Бинокли и оптические прицелы, позволяющие видеть в темноте, основаны на использовании...
 - А) Инфракрасного излучения
 - Б) Ультрафиолетового излучения
- 3. Какие лучи оказывают бактерицидное действие. Они убивают болезнетворные бактерии и используются с этой целью в медицине.
 - А) Ультрафиолетовые; Б) Инфракрасные
- 4. Перечислить источники ультрафиолетового излучения
 - А) Солнце
 - Б) Настольная лампа
 - В) Электрический обогреватель
- 5. Какое свойство инфракрасных лучей используют при сушке древесины, сена, овощей?
 - А) световое Б) химическое В) тепловое
- 6. Почему высоко в горах загорают особенно быстро?
 - А) При подъеме в горы уменьшается расстояние до Солнца
 - Б) В горах атмосфера меньше поглощает ультрафиолетовую часть спектра
- В) Высоко в горах ионосфера становится проходимой для ультрафиолетовых лучей

Вариант № 2.

- 1. Какое излучение применяют для сушки лакокрасочных покрытий, овощей и фруктов?
 - А) Ультрафиолетовое; Б) Инфракрасное
- 2. Какие волны испускают батареи отопления в квартире?
 - А) Ультрафиолетовые; Б) Инфракрасные
- 3. Почему солнечный свет, прошедший сквозь оконное стекло, не вызывает загара?
 - А) стекло рассеивает ультрафиолет
 - Б) стекло поглощает ультрафиолет
 - В) стекло отражает ультрафиолет
- 4. Какие лучи способствуют росту и укреплению организма
 - А) Ультрафиолетовые; Б) Инфракрасные
- 5. Какие лучи не вызывают зрительных образов, они невидимы.
 - А) Ультрафиолетовые; Б) Инфракрасные
- 6. Почему колбы ртутных медицинских ламп делают из кварцевого стекла.
 - А) Колбы медицинских ламп должны быть непроницаемы для ртути
 - Б) В медицине запрещено использование обычного стекла
 - В) Колбы медицинских ламп должны пропускать ультрафиолетовые лучи.

3. Изучение нового материла.

1. Гипотеза Планка

Классическая электродинамика дала серьезный сбой, когда ее попытались использовать для описания излучения нагретого тела (так называемого теплового или инфракрасного излучения).

Суть проблемы состояла в том, что простая и естественная электродинамическая модель теплового излучения приводила к бессмысленному выводу: любое нагретое тело, непрерывно излучая, должно постепенно потерять всю свою энергию и остыть до абсолютного нуля, т.е. T = 0 K или $t = -273 \, ^{\circ}\text{C}$ Однако ничего подобного не наблюдается.

В ходе решения этой проблемы немецкий физик Макс Планк высказал свою знаменитую гипотезу.

Гипотеза Планка: Электромагнитная энергия излучается и поглощается не непрерывно, а отдельными порциями квантами. Энергия кванта пропорциональна частоте излучения:

$$\mathbf{E} = \mathbf{h} * \mathbf{v} \tag{1}$$

Квант – это порция электромагнитного излучения.

Соотношение (1) называется формулой Планка, а коэффициент пропорциональности h - постоянной Планка $h = 6.63*10^{-34}$ Дж*c

После открытия Планка начала развиваться самая современная и глубокая физическая теория – квантовая физика (теория развития, движения и взаимодействия элементарных частиц).

Поведение всех микрочастиц подчиняется квантовым законам. Но впервые квантовые свойства материи были обнаружены именно при исследовании излучения и поглощения света.

2. Фотоэффект

Фотоэффект это вырывание электронов из вещества под действием света. Явление фотоэффекта было открыто немецким физиком Генрихом Герцем в 1887 году в ходе его знаменитых экспериментов по излучению электромагнитных волн, и экспериментально исследовано русским физиком Александром Григорьевичем Столетовым. Тщательные экспериментальные исследования, проведенные Столетовым в течение двух лет, позволили сформулировать основные законы фотоэффекта в 1888 году.

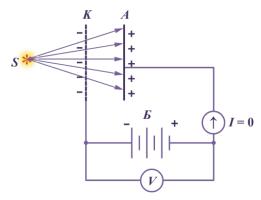
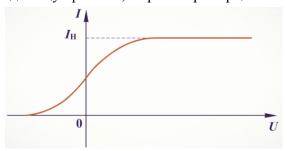



Схема установки для изучения законов фотоэффекта

Первый закон фотоэффекта: максимальное число электронов, вырываемых из вещества за единицу времени, - прямо пропорционален интенсивности падающего излучения.

Зависимость силы тока от приложенного напряжения

Увеличение интенсивности света означает увеличение числа падающих фотонов, которые вырывают с поверхности металла больше электронов.

Второй закон фотоэффекта: максимальная кинетическая энергия вырванных электронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением частоты падающего излучения.

Третий закон фотоэффекта: Для каждого вещества существует красная граница фотоэффекта наименьшая частота света \mathbf{v}_{\min} при которой фотоэффект еще возможен.

При $v < v_{\min}$ - фотоэффект не наблюдается ни при какой интенсивности света.

$$hv_{min} = A_B$$

$$v_{\min} = \frac{AB}{h}$$

h – постоянная Планка;

 \mathbf{v}_{min} - частота излучения, соответствующая *красной границе фотоэффекта*;

Ав - **работа выхода** — это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.

Для большинства веществ фотоэффект возникает только под действием ультрафиолетового облучения. Однако некоторые металлы, например, литий, натрий и калий, испускают электроны и при облучении видимым светом.

Уравнение Эйнштейна для фотоэффекта.

Теорию фотоэффекта разработал Альберт Эйнштейн. На основе квантовых представлений Эйнштейн объяснил фотоэффект. Электрон внутри металла после поглощения одного фотона получает порцию энергии и стремится вылететь за пределы кристаллической решетки, т.е. покинуть поверхность твердого тела. При взаимодействии с веществом энергия каждого кванта расходуется на совершение работы выхода A по извлечению электрона из $mn^2/2$

вещества и на придание электрону кинетической энергии $mv^2/2$:

$$h
u = A + rac{mv^2}{2}$$
. уравнение Эйнштейна

где $m = 9,1*10^{-31} \ \text{кг}$ - масса электрона,

 $e = -1,6 \ 10^{-19} \, \text{K}$ л - заряд электрона

h – постоянная Планка;

v - частота падающего излучения

В 1921 году Альберт Эйнштейн стал обладателем **Нобелевской премии**, которая, согласно официальной формулировке, была вручена «за заслуги перед теоретической физикой и особенно за открытие закона фотоэлектрического эффекта».

Если фотоэффект сопровождается вылетом электронов с поверхности вещества, то его называют **внешним** фотоэффектом или фотоэффект месли фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют **внутренним**.

4.Закрепление материала.

Ответьте письменно на вопросы:

- 1. В чем заключается гипотеза Планка?
- 2. Что такое квант? Как рассчитывается энергия кванта?
- 3. Что называется фотоэффектом? Кто открыл и изучил это явление?
- 4. Что устанавливают законы фотоэффекта?
- 5. Что устанавливает уравнение Эйнштейна для фотоэффекта?
- 6. Запишите формулу уравнения Эйнштейна.
- **7.** Что называется красной границей фотоэффекта? Как определить красную границу фотоэффекта?
- 8. Всегда ли возможен фотоэффект? От чего это зависит?

Решите залачи:

- 1. Частота света красной границы фотоэффекта для некоторого металла составляет $6*10^{14}$ Гц. Определите Работу выхода электрона из вещества.
- **2.** Определите частоту падающего излучения, если при фотоэффекте работа выхода электрона из металла равна $4.8 \cdot 10^{-19}$ Дж, а кинетическая энергия равна $2 \cdot 10^{-19}$ Дж.

Самостоятельная работа (решение задач)

1 вариант

- 1) Найдите работу выхода электрона из металла, если фотоэффект начинается при частоте падающего света $6,4\cdot 10^{14}\Gamma$ ц.
- 2) Электрон выходит из цезия с кинетической энергией 3,2·10⁻¹⁹ Дж. Какова длина волны света, вызывающего фотоэффект, если работа выхода равна 2,88·10⁻¹⁹ Дж?

2 вариант

- 1) Определите красную границу фотоэффекта для камня, если работа выхода равна $3,2\cdot40^{-19}$ Дж.(Выразить длину волны).
- 2) Какой частоты свет следует направить на поверхность платины, чтобы максимальная скорость фотоэлектронов была равно 3000 км/с? Работа выхода электронов из платины равна $1 \cdot 10^{-19} \, \text{Дж} \, (\text{m}_{\circ} = 9, 11 \cdot 10^{-31} \, \text{кг}).$

3 вариант

- 1) Найдите наибольшую длину световой волны, при которой начинается фотоэффект для цезия, платины? Работа выхода электрона соответственно равны 1,9 эВ и 6,3 эВ (1эВ=1,6· 10^{-19} Дж).
- 2) Найдите скорость фотоэлектронов, вылетевших из цинка, при освещении его ультрафиолетовым светом с длиной волны 300 нм, если работа выхода электрона из цинка равна $6.4\cdot10^{-19}$ Дж.