CS33: Introduction to Computer Organization
Fall 2020 Final

Name:
ulID:
Rules/Instructions:
All of your answers go into red tables like this:
What's the answer Your answer here

Notes:

When complete, save the exam as a PDF. (if there is a technical problem, just save as
docx)

Turn the exam in on CCLE, before 10:00pm PST (normal time), 11:30am PST (makeup
time). The exam is designed for 3 hours, but we are giving you an extra 30 minutes in
case you have any technical difficulties.

This is an open notes exam. By the honor system, you may not discuss exam
questions/solutions/experiences/thoughts/etc. with any person for 24 hours after the
exam start time.

Please do not alter which page each question is on. Please do your best to keep the
question boxes approximately the same size. If choose to scan the exam, try to line
it up nicely. This is to help TAs suffer less while grading.

There are 75 points total, but the exam is graded out of 60. (ie. the exam is pre-curved
so that there are 15 extra credit points possible)

You may ask for questions on Piazza (private posts only). Clarifications will be posted to
this google drive link: so it may be a good idea to check this before the exam is over.

If the architecture of the machine is not specified, assume that the question is being
asked in the context of a 64-bit little endian x86 machine.

Finally, please follow the university guidelines in reporting academic misconduct.

You may begin once you have read the rules above.

Note: Question4 eliminated due to ambiguity.

https://docs.google.com/document/d/1iin0TnaQJKZLZrz9xIi_QtiZS2MSmMucXpAfmunAr1E/edit?usp=sharing

Question 1. Linking (4 pts)

Suppose src1.c and src2.c are compiled and linked separately. Determine if the following
combinations of source files would cause errors, and if not, what would get printed.

Feel free to solve this problem by compiling the source files and linking them together. If an

answer is undefined, simply write “undefined” in the result box.

srcl.c src2.c Result?
(“compile error”, “linker
error” or describe output)
int i=1; int i=2;

int main() {
printf("%d\n",1i);
}

void func() {
i=3;

}

int i=1;

int main() {
printf("%d\n",i);

}

int i;
void func() {
i=3;

}

int i;
int main() {
printf("%d\n",1i);

int i;
void func() {
i=3;

} }
int i; int i=2;
int main() { void func() {

printf("%d\n",1i);
}

int i=3;

}

Question 2. Virtual Memory (6 pts)
Given the following details about the memory system and the states of the TLB and Caches, fill out
the following information in hex for a one byte request for the virtual address: OxD2A7E7

e Mainmemoryis 1 MB (2”20 bytes), byte-addressable with a 20 bit physical address.

e Virtual address is 24 bits long
e Apage of memory is 64 KB (2”16 bytes)
e 8-way set associative TLB with 16 entries
e 4-way set associative cache with 16 lines and cache block of 8 bytes
TLE Page Table Cache

Index|Tag|Valid PPN| [VPN|Valid PPN |[WPN|Valid PPN| |Index| Tag |Valid Data [0:7]
@ |G3| 1 2 @1 | @ | B8 || A1 | @ | B @ |@Fes| 1 |44 DC @7 94 BB 1C EC 3F
B |48 @ | & 87 | 1 3 ||lar| 1| c @ |5177| 1 |88 76 F& 3E 21 93 9F @D
@ |@e4| @ | B8 ec | 1 3 || ae | @ B @ |153F| @ |74 82 2C 15 71 B9 8B 12
@ |es| 1 | C 24 | 1 F |l B | @ 2 @ |1B1E| @ |CR 5D @7 BC A2 43 28 &D
@ |es| 1 | & dE| @ | A | B2 | @ | 8 1 |64@6| 1 |6C B5 41 55 EE F5 9B D3
B |53 @ | C 45 | @ | D || BE | @ F 1 |@8aE| 1 |2B F4 C1 1B F8 77 61 94
@ |38 1 | 8 4F | 1 1 ||ce| 1 | & 1 |52BD| @ |SF E3 BS 13 E7 6@ DA B7
@ |24 1 | © 56 | 1 1 ||| 1 | 6 1 |6676| @ |58 5D 18 DE 2F 2C 88 1B
1 |26 1 | C 50 | 1 | C || cF| 1 1 2 |2cci| 1 |CE 75 DE 35 8A E5 91 23
1 |66| @ | & 66 | @ | & || D2 | 1 2 2 |4em@| @ |81 69 9% 3D F1 BD 52 92
1 |e1| 1 3 A | 1 5 |7 | @ | @ 2 |11@81| @ |AG @A CB @6 E3 17 EC 75
1 |e7| 1 F 72 | 1 | 8 | E4a| @ | C 2 |7626| @ |@@ E9 AF C7 91 15 13 1A
1 |ez| 1 5 76 | @ | 8 || EA | 1 | @ 3 |4EoD| 1 |SB AD 28 @@ 19 42 5 CE
1 |e4| 1 | o sa | 1 | A || EF | @ | D 3 |3583| 1 |7A S5F SE &1 7F AZ 4% 3A
1 |ee| 1 | @ %4 | @ 5 || Fs | 1 | C 3 |6@41| 1 |36 92 15 &5 69 AE 25 D8
1 |1c| 1 E 96 | @ | A || F7 | 1 | C 3 |5227| @ |94 7E C7 26 14 4A 82 E9

VPN

VPO/PPO

TLB Index

TLB Tag

TLB Hit? (Y/N)

Page Fault? (Y/N)

PPN

Physical Address

Cache Offset

Cache Index

Cache Tag

Data

Question 3. Performance Analysis (7 pts)

Supposed the following code is compiled without aggressive compiler optimizations (ie. -Og like

we have been using in this class so far).

float sum, c[N], a[N], b[N];

int func(int j) {
for(j = 05 j < N; j+=2) {
sum += a[j+0] * b[j+0];
sum += a[j+1] * b[j+1];

}
}
Our processor has the following characteristics:
Func Unit Latency Cycles/Issue Func Unit Count in Processor
Float Multiplies 3 2 4
Float Adds 1 1 2
Loads 4 1 4
All other instructions 1 1 Infinite

What program optimization has been manually
applied to this code? (1pt)

Assuming the above hardware characteristics,
what is the latency bound on CPE? (please
consider one “element” to be one multiply and
accumulate) (2pt)

Assuming the above hardware characteristics,
what is the throughput bound on CPE? (only
consider floating multiplies, adds and loads) (2pt)

In terms of N, roughly how many cycles does this
program take on an out-of-order processor with no
other bottlenecks other than instruction latency
and throughput? (1pt)

In as few words as possible, what optimization can
you perform to improve the performance? (1pt)

Question 5. Forking Around (7pts)

Here’s a really forked up program:

int main () {
if (fork() == 0) {
if (fork() == 0) {
printf("0");
}
else {
pid_t pid; int status;
if ((pid = wait(&status)) > 0) {
printf("D");
}
}
}

else {
printf("E");
exit(9);

}

printf("R");

return 0;

1. List all possible program outputs (just put a space between answers if there is more than
one, leave empty if nothing can be printed, 5pts):

2. Will there be any zombies after this program runs? (yes or no, 2pts)

Question 6. Multiple Choice (16 pts)

For the following multiple choice questions, select all that apply. le. if none of the answers are
correct, simply leave the question blank. (2pts each, no partial credit)

1. What is the difference (or differences) between a TLB and on-chip cache?
a. The TLB is direct-mapped, while caches are set associative.
b. The TLB is indexed by the virtual address, while caches are indexed by the
physical address.
c. The TLB stores virtual-to-physical address translations, while caches store data.
d. The TLB can be slow, but caches need to be fast.
e. The TLB stores instructions, while caches store data.

2. Say we have two mutexes, implemented with binary semaphores, and two threads which
access them. Which of the following can cause deadlock:
a. The threads lock the mutexes in the same order.
b. The threads lock the mutexes in a different order.
c. The threads unlock the mutexes in the same order.
d. The threads unlock the mutexes in a different order.

3. Which stack protection techniques do not prevent return-oriented programming attacks?
a. Stack Canaries
b. Address space layout randomization
c. Limiting Executable Code Regions

4. In malloclab, several students implemented an optimization where small blocks would be
allocated at the beginning of a free block, and large blocks would be allocated at the end
of a free block. In what way was this useful on some traces?

a. lItincreases the memory utilization due to less internal fragmentation.

b. Itincreases the memory utilization due to more coalescing opportunities.
c. ltincreases the throughput due to smaller free lists.

d. ltincreases the throughput due to better temporal locality in caches.

5. After a fork(), to access which datastructures should the resulting two processes
synchronize?

a. Heap

b. Stack

c. Registers

d. Globals

e. Program Code

6. What's the purpose of the calling convention?
a. Enables virtual memory.
b. Helps enable separate compilation.
c. Improves external fragmentation.
d. Lowers the cost of creating threads.

7. Which of the following statements about C datatypes for x84 64 is true?
a. A float can represent any number a double can represent.
b. A double can represent any number an int can represent.
c. A char can represent any number a short can represent.
d. Along can represent any number a float can represent.

8. Which of the following do not necessarily involve exceptional control flow:
a. Context switch
b. Killing a process

c. Page Fault

Function Call
Segmentation Fault

Data Cache Miss

d
e
f. Timer Interrupt
g
h

TLB Miss (in x86_64)

Multiple Choice
Question Number

Write your answers here: (eg: a,b,d)

1.

2.

Question 7. Jumbled Metaphors (5 pts)

As you reach the later stages of the exam, you may notice your mind becoming a jumbled pile
of mixed metaphors. Sort yourself out by finding 10 words related to this course in the mess of
letters below.

Rules: Words must be contiguous, and they may be forwards or backwards and either
horizontal, vertical or diagonal. One example is given “thread”, but don’t count this one! Don’t
list extra words, or we won'’t grade the question. :)

E L B ATRMHZ CNARB
H AL I NK I L L P Y E
E E X I T DA ERHTR
G K ERNELWPALCL
A X K A AL I B RARY
P CNAWPAENTIBME
E C T I E T Y B H U R |
F L AL ELPFL S I B
A KB CAFULUOATT GCWM
U LHMHMHAE I F A DO
L K P I P EL I N E X Z
T CE I A BAAMULTZCT
N O Il I L NRTEUL F Y
L L NUEYET CYCULE

Please List 10 Other Words Here:

Question 8. Soulmate Simulator (9pts)

Suppose we want to create a soulmate simulator, where we randomly compare exactly two
people to see if they should be soulmates. For fun, let's represent each person as a thread. We
will call the “meet” function with many threads, and they will “mingle” to see if they are
soulmates. The only important thing for this problem, is that there should only be two threads in

the mingle() function at one time.

Wrong Code

Your Code

int number_of_people_meeting=0;
void *meet(void *personID)

{

while(number_of_people_meeting >1) {

}

number_of_people_meeting++;

mingle();
number_of_people_meeting--;

return NULL;
}

void main()

{

pthread_t t[N];
for (i=0; i < N; i++)
pthread_create(&t[i], O,
meet, (void *)i);

void *meet(void *personID)

{

mingle();

return NULL;
}

void main()

{

pthread_t t[N];
for (i=0; i < N; i++)
pthread_create(&t[i], O,
meet, (void *)i);

1. Examine the “Wrong Code” Above. In as few words as possible, why can'’t it guarantee
that only 2 threads are in the mingle function at the same time? (3pts)

2. Using a counting semaphore, complete the code on the right to guarantee that only 2
threads are calling mingle at the same time. (6pts)

Question 9: Inopportune Overlap (7 pts)

Think about the following two cases of “overlap” between aspects of the virtual memory system.

1.

Overlap of Variables -> Cache Lines: It's possible to imagine that a single primitive
variable (eg. int,float,char) could “straddle” two different cache lines. (ie. if it starts at the
end of one cache line, and is long enough to proceed into the next cache line).

This complicates the hardware, because a single access to a variable from the CPU has
to combine the information from multiple cache lines (yuk!). However, unless you are
messing about with pointer arithmetic, this does not happen in C.

In as few words as possible, what aspect of the C language prevents a single primitive
variable (ie. int, float, char, pointer, etc.) from being mapped to multiple cache lines?
(2pts)

Overlap of Cache Lines -> Pages: It's possible to imagine that one cache line could
“straddle” two different virtual memory pages.

2.1. In as few words as possible, list one reason why, if this was possible, it would
complicate the hardware or software for address translation. (3pts)

2.2 However, cache line’s don't straddle virtual memory pages in real systems, why?
(2pts)

10

Question 10. Another Phase? (8pts)
OMG another bomblab phase? Using instructions we never learned in class? @

00000000005858b6 <string_cpy>: # copies string (same as strcpy)
#... asm omitted...

00000000005858c4 <phase_defused>: #prints phase_defused message
#... asm omitted...

00000000005858de <explode_bomb>: #prints explode_bomb message
#... asm omitted...

00000000005858f8 <phase_11>:

5858f8: 48 83 ec 18 sub $0x18,%rsp

5858fc: 48 89 fe mov %rdi,%rsi

5858ff: 48 8d 7c 24 08 lea ox8(%rsp),%rdi

585904 : e8 ad ff ff ff callq 5858b6 <string_cpy>

585909: f3 of 10 44 24 o8 movss Ox8(%rsp),%xmmo

58590f: of 2e 05 12 17 09 00 ucomiss ©x91712(%rip) ,%xmmo
#Addr: 0x617028

585916: 7a 16 jp 58592e <phase_11+0x36>

585918: 75 14 jne 58592e <phase_11+0x36>

58591a: b8 00 00 00 00 mov $0x0, %eax

58591f: e8 a0 ff ff ff callg 5858c4 <phase_defused>

585924: bf 00 00 00 00 mov $0x0, %edi

585929: e8 22 df 990 00 callq 593850 <exit>

58592e: b8 00 00 00 00 mov $0x0, %eax

585933: e8 a6 ff ff ff callqg 5858de <explode_bomb>

585938: 48 83 c4 18 add $0x18,%rsp

58593c: c3 retq

000000000058593d <main>:
. asm omitted...

000000000058595a <secret_phase>:

Some helpful things:
e (gdb) print *(float*)0x617028
$3 =1157837119180632802476425216.000000
e Ucomiss compares two floating point values, it works similarly to cmp. You should be
able to ignore jp.
e string_cpy is the same as strcpy; but these versions make the code easier to read.

1. What string will diffuse this phase? (4pts)

2. What string will enter the secret phase? (4pts)

