Proposal for a Unicode Language
Inflection Work Group

Last modified: 2024-01-17

Introduction

Inflection is the process of changing the form of a word to express different grammatical
features, such as tense, number, gender, or case. In many languages, inflection is a complex
and nuanced process, and it can be difficult to implement inflection correctly in software. This
can lead to an inability to express native sounding sentences or to errors in text processing,
such as incorrect word forms or incorrect grammatical agreement.

For speakers of non-inflected languages, it may be hard to see the importance of inflections.
Here is an illustration from Serbian:

@ Velike(The big) @ CrVene(red) ® jabuke(apples) @ su paIe(have fallen) Sa(from) @ drveta(the/a tree).

e Adjectives D and @ have to agree in number, gender and case with the noun @
e Verb @ (in the past tense) has to agree with the noun @ in number and gender.
e Noun ® needs the locative case; the nominative would be drvo.

The noun cases often correspond to using prepositions in English, so one way to appreciate
how bad messages can appear to users in other languages is to consider English sentences
with the wrong prepositions and incorrect agreement in number: “There is 3 item of your inbox”
vs correct form “There are 3 items in your inbox”.

Problem Statement

The problem of inflection is particularly acute in languages that have a large number of
inflectional forms, such as all Slavic and Indic languages, Arabic, Korean and Finnish, as well as
many other languages, thus affecting a large number of users. In some languages (like
Romance languages), inflection affects mostly common words - adjectives, nouns, verbs, but in
many languages, proper nouns (like Geo-location names, Brand, People names) can also
inflect. Industry so far has either avoided solving this problem or tried solving it for narrow use
cases/language combinations. While it is particularly acute in those languages, languages such
as French also need to inflect according to gender and number.

LLMs can craft natural-sounding sentences in many languages, including those mentioned
above. They have the ability to generate and fill message formats for supported world
languages, such as English. Additionally, LLMs can be used to create lexicons and inflection

https://en.wikipedia.org/wiki/Inflection

rules. However, they do have some drawbacks that won’t be solved soon - they are large and
expensive to train and run, they induce latency for online services and often can’t fit on smaller
devices without significant quality loss (if at all). They also depend on the quality of data they
are trained on, so languages with less (or lower quality) available data may have insufficient
quality.

Proposal

The proposal is to form a new Unicode working group to develop a standard for handling
inflection in languages. The work group would need to define the scope of the project’, develop
APls, algorithms and/or ML models for generating inflections?, and create open source lexicons?
to support the use of the algorithms and models. We should also allow capability to leverage
external/private models and/or lexicons.

The initial goal of the project would be to solve the problem of placeholder replacement, e.g.
inflecting dynamic content like a name of a place in the message. Placeholders would be
already annotated with necessary grammatical information required of the substitution, so the
goal will be to inflect each substitution.

The MessageFormat 2.0 standard proposal already allows for such annotation, such as the
following:

English

None

.match {SuserGender :gender} {SuserName} {Scount :integer}
{SsourceCity}

* one

{{Hi {SuserName}, {Scount} package has arrived for you from
{SsourceCity}.}}

* %

{{Hi {SuserName}, {Scount} packages have arrived for you from
{SsourceCity}.}}

English doesn’t need the $userGender, so there are no “female” variant messages, and no case
value would be needed either (see below).

' At this point, we consider the 'unit' to be whatever is in the message; it may have 2 sentences, for
example.

2 The other direction (lemmatization) is also useful, e.g. for indexing and search.

3 There is a pre-existing Unicode effort to create lexicons, Unilex. We should look at it and extract what's
useful.

https://unicode-org.github.io/icu/userguide/format_parse/messages/mf2.html
https://github.com/unicode-org/unilex

Italian

None

.match {SuserGender :gender} {SuserName} {Scount :integer}
{SsourceCity}

female one

{{Benvenuta {SuserName}, {Scount} pacco & arrivato per te da
{SsourceCity}.}}

female *

{{Benvenuta {SuserName}, {Scount} pacchi sono arrivati per te da
{SsourceCity}.}}

* one

{{Benvenuto {SuserName}, {Scount} pacco & arrivato per te da
{SsourceCity}.}}

* *

{{Benvenuto {SuserName}, {Scount} pacchi sono arrivati per te da
{SsourceCity}.}}

In Italian, “Welcome” has two forms based on $userGender (the gender of the listener/reader):
Benvenuta for females, Benvenuto for males. In fact, the "you" would also change format based
on $userGender in languages like Arabic or Hebrew.

Serbian (Latin)

None

.match {SuserGender :gender} {SuserName} {Scount :integer}
{SsourceCity}

female one

{{Zdravo {SuserName case=vocative}, stigao ti je {Scount} paket iz
{SsourceCity case=genitive}}}

female *

{{Zdravo {SuserName case=vocative}, stigli su ti {Scount} paketi
iz {SsourceCity case=genitive}}}

male one

{{Zdravo {SuserName case=vocative}, stigao ti je {Scount} paket iz
{SsourceCity case=genitive}}}

male *
{{Zdravo {SuserName case=vocative}, stigli su ti {Scount} paketi
iz {SsourceCity case=genitive}}}

In Serbian, when inserted for the $sourceCity, “London” (nominative case) becomes “Londona”
(genitive case) after “iz” (="from”) in. Similarly “Petar” (nominative case) becomes “Petre”
(vocative case) when being addressed. Serbian also has more than 2 plural forms; those are
abbreviated in the examples.

The translation software would expand or contract the match values for the translator's
language, as is done now for MF1.0 (aka ICU select format). So the translation software would:
e add female message variants if the language needs them
e add plural variant messages if the language needs them (or remove them) as necessary.

It would also allow the translator to specify the case (case=X), if required by the language.

Beyond supplying the data/code for a module that performs inflection, an associated
requirement is to develop the data/code for a module that detects grammatical category values,
e.g. noun class (gender, animacy, etc.), of a placeholder, which is often required in order for
other placeholders to have grammatical agreement with that first placeholder. The approach to
solving this is similar to that of inflections (it can be done via lexicons, rules, LLMs, rules
generated by LLMs, etc).

For example, in languages with grammatical gender for objects, in the message “The {$item}
costs {$cost}: do you want to buy it?” the gender of $item may cause the gender of “it” to
change (to ‘him’ or ‘her’). See also: George Rhoten's comment on the MF2.0 discussion.

Potential approaches

There are a number of potential approaches to solve this problem. Here are some to start the
discussion.

e A first idea could be exclusive use of a lexicon for inflection. A lexicon is a database of
words and their inflections. Lexicons can be used to look up the correct inflection of a
word, and they can also be used to train machine-learning algorithms. Using lexicons
alone is not feasible, as they can’t cover all words, e.g. location names, brands etc. and
they tend to be large.

e A hybrid approach to the problem of inflection would be a mix of machine learning (ML),
lexicons and deterministic algorithms. ML models can derive rules for algorithms and
lexicons can take care of exceptions. Lexicons also help provide accurate grammatical
information to the models. This approach supports inflection for person names, places
etc.

e One of the first things to do (and a relatively simple step) would be to have (or reference)
a standardized machine-readable set of terms for grammatical categories. The initial
goal would be to flesh out all of the grammatical categories for all of the CLDR
languages (about 72 of the languages have data). Those would be keys for the lexicon
(curated or ML), and also be useful in MF2.0. We should draw on respected sources for
this work.

https://github.com/unicode-org/message-format-wg/discussions/334#discussioncomment-8057633
https://unicode.org/reports/tr35/tr35-general.html#Grammatical_Features
https://www.unicode.org/cldr/charts/44/grammar/index.html

e We should look at other available grammar processing, such as
https://docs.lingoona.com/grammar/ (the description for developers is not very fleshed
out; the guide for Authors and translators fills in some of the gaps).

How and what to deliver

Looking at the potential use of the inflection library and data, e.g. in Android and iPhone
devices, on web and desktop applications, we should consider how to develop and deploy the
solution. One approach is to:

1. Develop code in ICU4C/J/X. This approach has multiple benefits - already set up
infrastructure, wide deployment on all platforms, integration with CLDR data, existing
contributor pool and WG belonging to ICU TC.

2. Keep the rules and tools that generate those rules within our repository, and only
generate needed data for ICU, so they don’t have dependency on us. Similar approach
can be taken for ML models - training etc would happen on our end.

3. Lexicon data can be spread across CLDR and our repository, and can be used by ICU
when deployed. As an added benefit, some CLDR data could be trimmed, as we would
be able to generate inflected forms that we now hard code.

Benefit

There are 1.7B* Slavic, Arabic and Indic languages native speakers alone who are negatively
affected by the lack of inflection support in the software. Being able to properly convey
information — of professional quality — is a critical part of any Ul or user facing application and
inflection is a critical part of that ability.

Developing unified inflection solution across industry will help reach those users, and improve
localization quality and tooling. Results can also be used by the emerging Unicode
MessageFormat 2.0 standard that natively supports inflection, among other features.

Critical User Journeys

Personalization

Addressing a person by name is impossible without proper inflection, e.g. “Hi Petar” in emails
has to change from “Zdravo Petar’ — “Zdravo Petre”, in Uls on devices, smart assistants etc.

Grammatical Agreement With People

Lots of words can depend on the gender of the audience for a message. For example, saying
“Welcome” in Spanish can be “Bienvenido” or “Bienvenida” depending on whether the message

* See https://en.wikipedia.org/wiki/Multilingualism_in_India,
https://en.wikipedia.org/wiki/Slavic_languages, https:/en.wikipedia.org/wiki/Arabic

https://docs.lingoona.com/grammar/
https://docs.lingoona.com/grammar/creatives/faq/
https://en.wikipedia.org/wiki/Multilingualism_in_India
https://en.wikipedia.org/wiki/Slavic_languages
https://en.wikipedia.org/wiki/Arabic

recipient is masculine or feminine. Another example is in Hebrew and Arabic where you can
only say “Here are your messages” when you know the gender of the audience. The possessive
second person pronoun attached to the word messages is gendered in those languages. If you
don’t know the gender, you can write sentences in an alternative way, but it can sound awkward,
passive and less personal. It can be offensive to some cultures when the words chosen do not
grammatically agree with the gender identity of the person being referred to.

Travel

Travel sites often present text like “Your flight from Paris to London was delayed.”, where places
are dynamically inserted from user selection. One cannot form a natively sounding sentence
without inflection.

Improve ICU & CLDR

We support various forms of data in CLDR and expose it through ICU APls, e.g. standalone
month names, measurement units etc. We would improve developer experience if we included
inflection feature by removing the need for hard coded forms (standalone, part of the date...).

Timeline

This is a rough timeline: it would be revised based on initial discussions, of course.
Q1 2024 - organize the group, invite people, set up the discussion tools and meetings. Come up
with the scope of the effort and define sub-projects, e.g. getting lexicons, defining what

infrastructure to use for inflection logic etc.

Q4 2024 - have a few prototypes for X languages, including lexicons to drive them. Outreach to
communities, universities etc to contribute.

2025 - stable environment and tools for contributors to add new rules, lexicons.

	Proposal for a Unicode Language Inflection Work Group
	Introduction
	Problem Statement
	Proposal
	English
	
	Italian
	Serbian (Latin)
	Potential approaches
	How and what to deliver

	Benefit
	Critical User Journeys
	Personalization
	Grammatical Agreement With People
	Travel
	Improve ICU & CLDR

	Timeline

