Astronomy Objectives

How to use this document: The student will be able to use the objective (DCI) with SEPs and CCCs to explain anchoring phenomena.

Barnes' notes: <u>unit 1</u>, <u>unit 2</u>, <u>unit 3</u>, <u>unit 4</u>.

Sky Observation and Measurement				
Objectives Student will be able to:	Key Concepts	Sample Anchoring Phenomena	Suggested SEP's & CCC's	Text Pages
Describe how astronomical theories have changed over time.	 Aristotle, Hipparchus, Ptolemy, Copernicus, Brahe & Kepler, Galileo, Newton Geocentric vs Heliocentric Model Retrograde motion, Epicycles Universal Law of Gravity (F_G=Gm₁m₂/d²) 			
2. Recognize and apply tools and methods of observing and measuring the cosmos.	 Astrolabe, Telescopes (land/space, reflector/refractor, wavelengths), Spectroscopy, Space probes Electromagnetic waves/spectrum c = λ * υ E = h * υ Atomic spectra 			
3. Identify common celestial objects and describe celestial motion & celestial orientation.	 Celestial Sphere, Horizon, Zenith, Meridian, NCP & SCP Declination/Right Ascension, Altitude/Azimuth Paths of celestial bodies, circumpolar, never-rise, rise/set Constellations 			
4. Compare common astronomical units of measure.	 Astronomical Unit, Lightyear, Parallax, Parsec Magnitude (absolute & apparent), Luminosity, Brightness b=L/4πd² Kelvin 			

Solar Systems					
Objectives The student will be able to:	Key Concepts	Sample Anchoring Phenomena	Suggested SEP's & CCC's	Text Pages	
1. Illustrate the interactions within the Earth, Sun, and Moon system.	 Moon phases (waning/waxing, crescent, quarter, gibbous, full, new) Divisions of time Eclipses (solar/lunar, total vs partial vs annular, umbra, penumbra) Tides Seasons (equinox, solstice) Solar vs Sidereal Milankovich cycles 				
2. Describe the structural organization of our solar system.	• Sun, planets (Terrestrial/Jovian), moons, dwarf planets, asteroid belt, comets, meteoroids, Kuiper belt, Oort Cloud				
3. Explain how our solar system was formed.	 Nebular theory Nebula, protostar, star, protoplanetary disk, accretion, planetesimal, protoplanet Exoplanets (implications upon NT) 				
4. Illustrate motion of planetary bodies using Kepler's Laws, Newton's Universal Law of Gravitation, and Einstein's Theory of General Relativity.	 Law of Orbits, ellipse, eccentricity, foci, semi-major axis Law of Areas, perihelion, aphelion Law of Periods, T²=a³ F_G=Gm₁m₂/d² Spacetime 				
5. Describe humanity's place in the solar system.	 Threats to humanity Settlements Other life in our solar system				
6. Explain how astronomers search for extraterrestrial life in other solar systems.	 Goldilocks zone Organic chemistry & requirements for life Drake equation & Fermi paradox 				

Star Classification & Evolution					
Objectives The student will be able to:	Key Concepts	Sample Anchoring Phenomena	Suggested SEP's & CCC's	Text Pages	
Compare and contrast the characteristics of various stars.	 Radius, mass, temperature, spectra, luminosity, composition. Distance to stars Wien's law (λ_{peak}*T_K = 2.898x10⁻³m*K) 				
2. Classify stars based upon the characteristics above.	 HR diagram Luminosity classes & spectral classes Main sequence, white dwarf, red giant, black dwarf, blue giant, supergiants, brown dwarf 				
3. Describe/illustrate the forces and energy in a star during its lifetime.	 Nuclear fusion vs gravity Energy production E=mc² Mass defect 				
4. Explain how the mass of a star dictates its life cycle.	Element formationSolar masses				
5. Describe the various events at the end of a star's life which lead to different celestial objects.	 White dwarf, supernova, neutron stars, black holes, pulsar, gravity waves, wormholes, cosmic rays Planetary nebula, cepheid variables 				
6. Illustrate characteristics of the sun.	• Layers, sunspots, corona, solar wind, prominences				

Galaxies and Cosmology				
Objectives The student will be able to:	Key Concepts	Sample Anchoring Phenomena	Suggested SEP's & CCC's	Text pages
Illustrate the structure and scale of the Milky Way.	Disk, spiral arms, central bulge, halo, globular clusters, open clusters			
2. Demonstrate knowledge of properties of galaxies and classification of these characteristics.	 Spiral, barred spiral, elliptical, irregular Supermassive black holes, Active galaxies, Quasars Dark matter (WIMPs and MACHOs) 			
3. Illustrate the structure, organization, and scale of the universe.	 Planet, solar system, stellar neighborhood, galaxy, galactic group, superclusters, observable universe Cepheid variables, Type 1a supernovae, Hubble's constant 			
4. Explain the origin/birth of the universe as outlined by the Big Bang Theory and provide supporting evidence.	 Shape of space, galactic redshift, cosmic background radiation, composition of the universe Fundamental forces, inflation Edwin Hubble 			
5. Explain the possible end of universe outcomes and provide supporting evidence for each.	 Open, closed, flat Big crunch, big freeze, big rip Dark energy			