Question

How application can influence span status set by instrumentation library
https://github.com/open-telemetry/opentelemetry-specification/issues/4131

Related

Convention for cancelled spans
HTTP span status: use SHOULD instead of MUST for errors

Problems

e 404 (and similar) is error or not-an-error depending on the context
e Tail-based sampling relies on errors
e Alerts/monitoring based on error status is unreliable

test: BlobContainerClient.CreatelfNotExists

Trace detail 8/20/2024 5:22:10.990 PM Duration 150.63ms Resources 1 Depth2 Total spans 2 View logs

Name ‘Ops 37.66ms 75.32ms 12.97ms 15

test

test @ testmelm.blob.core.windows.net:443 puT ‘ 107.64ms

I I

test: PUT

Resource test Duration 107.64ms Start time 20.63ms Q Filter

Name

Status

error.type

Solutions
1. Do nothing

e Backends should detect when outer span status is OK/UNSET and nested is ERROR.
They should visualize/explain that inner error is not that important (was handled or not
an error)

e Users should change their habits and stop considering inner span status to be indicative
of an error:

https://github.com/open-telemetry/opentelemetry-specification/issues/4131
https://github.com/open-telemetry/semantic-conventions/issues/560
https://github.com/open-telemetry/semantic-conventions/pull/1167

o Tail-based sampling should use more sophisticated policies
o Alerts should be more complicated - e.g. focus on server-side rather than
client-side telemetry

Cons:
e Does not work well for metrics: there is no relationship between outer/inner metrics.
Outer metric may not exist
e HTTP/gRPC span status set to ERROR does not mean anything on its own

2. Change span status in SpanProcessor.OnEnding

e Users can leverage spanProcessor.OnEnding callback to override status set by
instrumentation library

e They will need to filter out specific spans whose status should be changed to UNSET.

o E.g.all client spans sent to specific server.address with specific
http.request.method that have specific http.response.status code.
o This can be done using context/thread-local/etc
Cons:
e Does not work for metrics
e Hard, error-prone

3. Scoped hooks into instrumentations

scope = Instrumentation.customize (
span -> span

.setAttribute (

.setStatus (UNSET)

measurement -> measurement
.setAttribute (

client.put (

e New API that would allow app/another instrumentation to register a scoped callback
executed at the end of each span/measurement.
Callback can read and modify spans and/or measurements.
Useful for enrichment - hitps://github.com n-telemetr 111207
Maybe useful for redaction/sanitization

https://github.com/open-telemetry/oteps/pull/207

Cons:
e Needs cross-signal instrumentation API https://github.com/open-telemetry/oteps/pull/165
e Tricky API design

Notes:
e Maybe Developer Experience WG could take it over?

4. Native instrumentations provide API

HttpRequestMessage (HttpMethod. Put
)

HttpMetricsEnrichmentContext.AddCallback (reqg
ctx => ctx.SetAttribute (

awailt httpClient.SendAsync (req)

That's similar to what native .NET HTTP metrics provide now.

Cons:
e Don't have native instrumentations for everything
e APl is instrumentation-specific

Proposal

Short term: Recommend changing span status in SpanProcessor.OnEnding (Opt2)
Long term: We need to look into customization and enrichment - this comes up a lot (Opt3)

https://github.com/open-telemetry/oteps/pull/165
https://learn.microsoft.com/dotnet/api/system.net.http.metrics.httpmetricsenrichmentcontext

	Question
	Related

	Problems
	Solutions
	1. Do nothing
	2. Change span status in SpanProcessor.OnEnding
	3. Scoped hooks into instrumentations
	4. Native instrumentations provide API

	Proposal

