
Question
How application can influence span status set by instrumentation library
https://github.com/open-telemetry/opentelemetry-specification/issues/4131

Related
Convention for cancelled spans
HTTP span status: use SHOULD instead of MUST for errors

Problems
●​ 404 (and similar) is error or not-an-error depending on the context
●​ Tail-based sampling relies on errors
●​ Alerts/monitoring based on error status is unreliable

Solutions

1. Do nothing

●​ Backends should detect when outer span status is OK/UNSET and nested is ERROR.
They should visualize/explain that inner error is not that important (was handled or not
an error)

●​ Users should change their habits and stop considering inner span status to be indicative
of an error:

https://github.com/open-telemetry/opentelemetry-specification/issues/4131
https://github.com/open-telemetry/semantic-conventions/issues/560
https://github.com/open-telemetry/semantic-conventions/pull/1167

○​ Tail-based sampling should use more sophisticated policies
○​ Alerts should be more complicated - e.g. focus on server-side rather than

client-side telemetry

Cons:

●​ Does not work well for metrics: there is no relationship between outer/inner metrics.
Outer metric may not exist

●​ HTTP/gRPC span status set to ERROR does not mean anything on its own

2. Change span status in SpanProcessor.OnEnding
●​ Users can leverage SpanProcessor.OnEnding callback to override status set by

instrumentation library
●​ They will need to filter out specific spans whose status should be changed to UNSET.

○​ E.g. all client spans sent to specific server.address with specific
http.request.method that have specific http.response.status_code.

○​ This can be done using context/thread-local/etc
Cons:

●​ Does not work for metrics
●​ Hard, error-prone

3. Scoped hooks into instrumentations

try (var scope = Instrumentation.customize(​
 span -> span
 .setAttribute("error.type", null)
 .setStatus(UNSET),

 measurement -> measurement
 .setAttribute("error.type", null))) {

 client.put("https://storage/create-if-not-exists");​
}

●​ New API that would allow app/another instrumentation to register a scoped callback
executed at the end of each span/measurement.
Callback can read and modify spans and/or measurements.

●​ Useful for enrichment - https://github.com/open-telemetry/oteps/pull/207
●​ Maybe useful for redaction/sanitization

https://github.com/open-telemetry/oteps/pull/207

Cons:
●​ Needs cross-signal instrumentation API https://github.com/open-telemetry/oteps/pull/165
●​ Tricky API design

Notes:

●​ Maybe Developer Experience WG could take it over?

4. Native instrumentations provide API

var req = new HttpRequestMessage(HttpMethod.Put,
 "https://storage/create-if-not-exists");

HttpMetricsEnrichmentContext.AddCallback(req,
 ctx => ctx.SetAttribute("error.type", null));

await httpClient.SendAsync(req);

That's similar to what native .NET HTTP metrics provide now.

Cons:

●​ Don't have native instrumentations for everything
●​ API is instrumentation-specific

Proposal
Short term: Recommend changing span status in SpanProcessor.OnEnding (Opt2)
Long term: We need to look into customization and enrichment - this comes up a lot (Opt3)

https://github.com/open-telemetry/oteps/pull/165
https://learn.microsoft.com/dotnet/api/system.net.http.metrics.httpmetricsenrichmentcontext

	Question
	Related

	Problems
	Solutions
	1. Do nothing
	2. Change span status in SpanProcessor.OnEnding
	3. Scoped hooks into instrumentations
	4. Native instrumentations provide API

	Proposal

