WeekN

PPA

PROGRAM

MOCK

AN |Nn|D W I[N |

MOCK -T2_2025 - Program 1

AIM : Write a C program that reads the coordinates of a point x and y as integers and
determines in which quadrant the point lies. Assume that neither of the coordinates will be 0.

If both x and y are positive, print Quadrant 1.
If x 1s negative and y is positive, print Quadrant 2.
If both x and y are negative, print Quadrant 3.
If x 1s positive and y is negative, print Quadrant 4.

Input Format
Two integers x and y are separated by a space.

Output Format
Print the quadrant in which the point lies

Sample Input
5-7

Output
Quadrant 4

PROGRAM :

#include <stdio.h>
int main() {
int p,q;
scanf("%d %d",&p,&q);
if((p==0) && (q==0))
printf("Origin");
else if(p==0)
printf("y-axis");
else if(q==0)
printf("x-axis");
else if((p>0)&&(g>0))
printf("Quadrant 1");
else if((p<0)&&(q>0))
printf("Quadrant 2");
else if((p<0)&&(q<0))
printf("Quadrant 3");

else

printf("Quadrant 4");

return 0;

}

OUTPUT:

Sample Inputl
5 -7

Output
Quadrant 4

Sample Input2
4 4

Output
Quadrant 1

Sample Input3
-4 -4

Output
Quadrant 3

Sample Input4
-4 4

Output
Quadrant 2

MOCK - T2_2025 - Program 2

AIM : Write a C program that prints a discount based on a customer's membership level and
their purchase amount. The discount rules are as follows:

e Gold Member(G):
- Purchase >= 1000: Discount 20%
- Purchase < 1000: Discount 15%
e Silver Member(S):
- Purchase >= 1000: Discount 10%
- Purchase < 1000: Discount 5%
e Regular Customer(R):
- Purchase >= 1000: Discount 3%
- Purchase < 1000: Discount 1%

Input Format:
First Line: A character (G/S/R) represent the membership level

Second line: An Integer represents the purchase amount

Output Format:
Discount amount as float with two decimal point

PROGRAM:

#include<stdio.h>
int main()
{
float pamt,dis,damt;
char mlevel;
scanf("%c",&mlevel);
scanf("%f",&pamt);
switch(mlevel)
{
case 'G": if(pamt<1000)
dis=15;
else
dis=20;
break;
case 'S': if(pamt<1000)
dis=5;
else

dis=10;
break;
case 'R': if(pamt<1000)
dis=1;
else
dis=3;
break;

}
damt=(pamt*dis)/100.0;
printf("%.2f",damt);
return O;

}

OUTPUT:
Sample Input 1
G

1200

Output

240.00

Sample Input 2
S

950

Output

47.50

Sample Input 3
G
2500

Output
500.00

Sample Input 4
R
1000

Output
30.00

MOCK — T2_2025% - Program 3

PROGRAM 1

AIM : Write a function called total that takes three positive integers: start, end, and k as
parameters, where start < end. The function should calculate and return the sum of all even
numbers within the inclusive range from start to end that are divisible by k.

Sample Input

2 //start

14 //end

3//k

Output

18

Explanation:

Here, 2, 4, 6, 8, 10, 12, and 14 are even numbers in between 2 and 14 and out of these, 6 and 12
are divisible by 3. Hence, output will be 6 + 12 = 18.

PROGRAM
#include<stdio.h>
int total(int start, int end, int k)
{
int i,sum=0;
if(start%2==0)
i=start;
else
i=start+1;

for(; i<=end;i+=2)
{
if(i%k==0)
sum=sum-+i;

}
return sum;

}

int main()

{
int start, end, k;
scanf("%d",&start);
scanf("%d",&end);
scanf("%d",&k);
printf("%d" total(start, end, k));

return O;

}
OUTPUT :

Sample Inputl
1

20

4

Output
60

Sample Input2
1

20

5

Output

30

MOCK — T2_2025 - Program 4

PROGREAM 1

AIM : Write a function print_pattern that takes an integer n and prints the following type of
pattern:

Letn=35.

Output

1

21

321

4321

54321

Note:- There is no space after last digit in each line.

Sample Input
3

Output

1

21

321

PROGRAM .

#include<stdio.h>
void print_pattern(int n)
{
int l,j;
for(l=1;l<=n;l++)
{
for(j=1;j>=2;j--)
printf("%d ",j);
printf("1");
printf("\n");

}

int main()

int n;
scanf("%d",&n);
print_pattern(n);
return O;

OUTPUT :

Sample Inputl
3

Output

1
21
321

Sample Input2
5

Output
1

g w N
DSw N
w N =
N -
=

MOCK — T2_2025 - Program S

PROGERAM 1

AIM : An Armstrong number is an n-digit number if the sum of its digits, each raised to the
power of n, is equal to the original number itself.
For example, let's consider a 3-digit number:

In this case, 153 is an Armstrong number because the sum of the cubes of its digits equals the
number itself (153).

Write a function countArmstrong that takes three integer pointers a, b, and count as parameters.
The function counts all Armstrong numbers in between the value at a and b(both inclusive) and
stores the count at the pointer count.

Note:- The function does not return anything. It stores the count of the Armstrong numbers at
pointer count. Both values at pointer a and b are positive integers and a <b.

Sample Input

1155

Output

10

Explanation

1,2,3,4,5,6,7,8,9 and 153 are the Armstrong numbers in the range of 1 to 155.

PROGRAM :

#include <stdio.h>
#include <math.h>
// Write solution code below

int armstrong(int n)

{
long int result = 0, power=1;
int cnt=0,r,num;

num =n;

while (n 1=0) {
n /= 10;
++cnt;

}

n =num;

while (n !=0) {
r=n%10;
power=pow(r,cnt);
result += power;
n /= 10;

}

if (result == num)
return 1;

else
return O;

void countArmstrong(int *a,int *b,int *count)
{
inti;
*count=0;
for(i=*a; i<=*b;i++)
{
if(armstrong(i))
*count=*count+1;

}
}

int main()

{
int a,b,count;
scanf("%d %d",&a,&b);
countArmstrong(&a,&b,&count);
printf("%d",count);
return O;

}

OUTPUT :

Sample Inputl
1 10

Output

9

Sample Input2

1 155
Output
10

Sample Input3
1 10000
Output

16

Sample Input4
10 10000
Output

7

PMOCK — T2_2025 - Program B

PROGRAMNM 1

AIM : Write a function BinaryToDecimal that takes an long integer number B, which
represents binary number (consists of Os and 1s only) and an integer pointer D as parameters.
The function converts the given binary number B to a decimal number and stores the equivalent
decimal number at the pointer D.

Note:- The function does not return anything, it only stores the equivalent decimal number at
pointer D.

Sample Input

1111

Output

15

Explanation

Here, the value of variable B is 1111. Consider this value of B as a binary number and convert it
into an equivalent decimal number. Hence, the equivalent decimal number of the binary
number 1111 is 15.

Note:- You can use the given power function given in prefix code to return in your solution
code (if required).

PROGRAM .

#include<stdio.h>
int power(int x,int y)
{
int pow = 1;
for (intj=1;j<=y;j++)
{
pow *=x;

}

return pow;

void BinaryToDecimal(long int B, int *D)
{
inti=0,r;
*D=0;
while (B !1=0) {
r=B%10;
*D +=r * power(2, i);
B /=10;
++i;

I

}

int main()

{
long int B;
int D;
scanf("%ld",&B);
BinaryToDecimal(B, &D);
printf("%d", D);
return O;

OUTPUT :

Sample Inputl
1000

Output
8

Sample Input2
1111

Output
15

Sample Input3
111111

Output
63

Sample Input4
1

Output
1

	

