

WeekN

o
PPA PROGRAM

MOCK

1
2
3
4
5
6

AIM : Write a C program that reads the coordinates of a point x and y as integers and
determines in which quadrant the point lies. Assume that neither of the coordinates will be 0.

●​ If both x and y are positive, print Quadrant 1.
●​ If x is negative and y is positive, print Quadrant 2.
●​ If both x and y are negative, print Quadrant 3.
●​ If x is positive and y is negative, print Quadrant 4.

Input Format
Two integers x and y are separated by a space.

Output Format
Print the quadrant in which the point lies

Sample Input
5 -7
Output
Quadrant 4

PROGRAM :

#include <stdio.h>
int main() {
 int p,q;
 scanf("%d %d",&p,&q);
 if((p==0) && (q==0))
 printf("Origin");
 else if(p==0)
 printf("y-axis");
 else if(q==0)
 printf("x-axis");
 else if((p>0)&&(q>0))
 printf("Quadrant 1");
 else if((p<0)&&(q>0))
 printf("Quadrant 2");
 else if((p<0)&&(q<0))
 printf("Quadrant 3");

 else
 printf("Quadrant 4");
return 0;
}

OUTPUT:

Sample Input1
5 -7

Output
Quadrant 4

Sample Input2
4 4
Output
Quadrant 1

Sample Input3
-4 -4
Output
Quadrant 3

Sample Input4
-4 4
Output
Quadrant 2

AIM : Write a C program that prints a discount based on a customer's membership level and
their purchase amount. The discount rules are as follows:

●​ Gold Member(G):
 · Purchase >= 1000: Discount 20%
 · Purchase < 1000: Discount 15%

●​ Silver Member(S):
 · Purchase >= 1000: Discount 10%
 · Purchase < 1000: Discount 5%

●​ Regular Customer(R):
 · Purchase >= 1000: Discount 3%
 · Purchase < 1000: Discount 1%

Input Format:
First Line: A character (G/S/R) represent the membership level

Second line: An Integer represents the purchase amount

Output Format:
Discount amount as float with two decimal point

PROGRAM:

#include<stdio.h>
int main()
{
 float pamt,dis,damt;
 char mlevel;
 scanf("%c",&mlevel);
 scanf("%f",&pamt);
 switch(mlevel)
 {
 case 'G': if(pamt<1000)
 dis=15;
 else
 dis=20;
 break;
 case 'S': if(pamt<1000)
 dis=5;
 else

 dis=10;
 break;
 case 'R': if(pamt<1000)
 dis=1;
 else
 dis=3;
 break;

 }
 damt=(pamt*dis)/100.0;
 printf("%.2f",damt);
 return 0;
}

OUTPUT:

Sample Input 1
G
1200
Output
240.00

Sample Input 2
S
950
Output
47.50

Sample Input 3
G
2500

Output
500.00

Sample Input 4
R
1000
Output
30.00

AIM : Write a function called total that takes three positive integers: start, end, and k as
parameters, where start < end. The function should calculate and return the sum of all even
numbers within the inclusive range from start to end that are divisible by k.
Sample Input
2 //start
14 //end
3 //k
Output
18
Explanation:
Here, 2, 4, 6, 8, 10, 12, and 14 are even numbers in between 2 and 14 and out of these, 6 and 12
are divisible by 3. Hence, output will be 6 + 12 = 18.

PROGRAM
#include<stdio.h>
int total(int start, int end, int k)
{
 int i,sum=0;
 if(start%2==0)
 i=start;
 else
 i=start+1;

 for(; i<=end;i+=2)
 {
 if(i%k==0)
 sum=sum+i;
 }
 return sum;
}
int main()
{
 int start, end, k;
 scanf("%d",&start);
 scanf("%d",&end);
 scanf("%d",&k);
 printf("%d",total(start, end, k));

 return 0;
}
OUTPUT :

Sample Input1
1
20
4

Output
60

Sample Input2
1
20
5
Output
30

AIM : Write a function print_pattern that takes an integer n and prints the following type of
pattern:
Let n = 5.
Output
1
2 1
3 2 1
4 3 2 1
5 4 3 2 1
Note:- There is no space after last digit in each line.​
​
​
Sample Input
3
Output
1
2 1
3 2 1

PROGRAM :

#include<stdio.h>
void print_pattern(int n)
{
 int l,j;
for(l=1;l<=n;l++)
{
 for(j=l;j>=2;j--)
 printf("%d ",j);
 printf("1");
 printf("\n");
}

}
int main()

{
 int n;
 scanf("%d",&n);
 print_pattern(n);
 return 0;
}

OUTPUT :

Sample Input1
3
Output
1
2 1
3 2 1

Sample Input2
5
Output
1​
2 1​
3 2 1​
4 3 2 1​
5 4 3 2 1

AIM : An Armstrong number is an n-digit number if the sum of its digits, each raised to the
power of n, is equal to the original number itself.
For example, let's consider a 3-digit number:

In this case, 153 is an Armstrong number because the sum of the cubes of its digits equals the
number itself (153).
Write a function countArmstrong that takes three integer pointers a, b, and count as parameters.
The function counts all Armstrong numbers in between the value at a and b(both inclusive) and
stores the count at the pointer count.
Note:- The function does not return anything. It stores the count of the Armstrong numbers at
pointer count. Both values at pointer a and b are positive integers and a < b.
Sample Input
1 155
Output
10
Explanation
1, 2, 3, 4, 5, 6, 7, 8, 9 and 153 are the Armstrong numbers in the range of 1 to 155.

PROGRAM :

#include <stdio.h>
#include <math.h>
// Write solution code below

int armstrong(int n)
{
 long int result = 0, power=1;
 int cnt=0,r,num;
 num = n;

 while (n != 0) {
 n /= 10;
 ++cnt;
 }

 n = num;

 while (n != 0) {
 r = n % 10;
 power=pow(r,cnt);
 result += power;
 n /= 10;
 }

 if (result == num)
 return 1;
 else
 return 0;

}

void countArmstrong(int *a,int *b,int *count)
{
 int i;
 *count=0;
 for(i=*a; i<=*b;i++)
 {
 if(armstrong(i))
 *count=*count+1;
 }
}

int main()
{
 int a,b,count;
 scanf("%d %d",&a,&b);
 countArmstrong(&a,&b,&count);
 printf("%d",count);
 return 0;
}

OUTPUT :

Sample Input1
1 10
Output
9

Sample Input2

1 155
Output
10

Sample Input3
1 10000
Output
16

Sample Input4
10 10000
Output
7

AIM : Write a function BinaryToDecimal that takes an long integer number B, which
represents binary number (consists of 0s and 1s only) and an integer pointer D as parameters.
The function converts the given binary number B to a decimal number and stores the equivalent
decimal number at the pointer D.
Note:- The function does not return anything, it only stores the equivalent decimal number at
pointer D.
Sample Input
1111
Output
15
Explanation
Here, the value of variable B is 1111. Consider this value of B as a binary number and convert it
into an equivalent decimal number. Hence, the equivalent decimal number of the binary
number 1111 is 15.

Note:- You can use the given power function given in prefix code to return in your solution
code (if required).

PROGRAM :

#include<stdio.h>
int power(int x,int y)
{
 int pow = 1;
 for (int j = 1; j <= y;j++)
 {
 pow *= x;
 }
 return pow;
}

void BinaryToDecimal(long int B, int *D)
{
 int i=0,r;
 *D=0;
 while (B != 0) {
 r = B % 10;
 *D += r * power(2, i);
 B /= 10;
 ++i;
 }

}

int main()
{
 long int B;
 int D;
 scanf("%ld",&B);
 BinaryToDecimal(B, &D);
 printf("%d", D);
 return 0;
}

OUTPUT :

Sample Input1​
1000​
​
Output​
8​

Sample Input2​
1111​
​
Output​
15

Sample Input3
111111​
​
Output​
63​

Sample Input4​
1​
​
Output​
1

	

