FLIP-556: Introduce BITMAP Data Type

Motivation

Flink currently lacks a built-in data type for efficient storage and set operations on large
collections of integers, such as user IDs, device IDs, or time-sliced identifiers. While exact
high-cardinality deduplication is a common requirement in real-time analytics, Flink does not
provide native support for compressed integer sets. As a result, users who need precise
distinct counting or set algebra (e.g., intersection of user groups) are forced to integrate
external libraries like RoaringBitmap[1] through UDFs or custom state serializers—an
approach that is error-prone, hard to maintain, and lacks integration with Flink’s type system,
SQL engine, and state management.

To address this, we propose introducing a new native BITMAP type for 32-bit unsigned
integers, implemented using the widely adopted RoaringBitmap, which has become the de
facto standard for compressed bitmap representations and is supported by major analytical
systems including ClickHouse[2], StarRocks[3], Doris[4], and PostgreSQL (via
extensions)[5].

The BITMAP type provides:

- Compact storage of integer sets through adaptive compression;
- Exact deduplication with constant-time cardinality;
- Efficient logical operations (AND, OR, XOR, ...) directly on compressed data.

BITMAP Semantics

The BITMAP type represents a set of 32-bit unsigned integers, with the following semantic
properties:

- 32-bit integer storage: Only integers in the logical range [0, 2*32) are supported.
64-bit integers are out of scope (see description below).

- Unsigned interpretation: Values are treated as unsigned. For example, the Java
integer -1 (bit pattern OXFFFFFFFF) is interpreted as 4294967295. This affects some
logic related to ordering.

- Equality and hashing: BITMAP supports equals() and hashCode(), enabling its use in
GROUP BY and DISTINCT.

- Non-comparable: BITMAP does not define a total order. It cannot be used in ORDER
BY, comparison predicates, or as a key in ordered data structures.

- Nullability: BITMAP supports NULL values. NULL represents the absence of a
bitmap, while an empty bitmap is a valid object with zero elements. For example:

- BITMAP_CARDINALITY(NULL) — NULL
- BITMAP_CARDINALITY(empty_bitmap) — 0
- BITMAP_OR(bitmap, NULL) — NULL

- BITMAP_OR(bitmap, empty_bitmap) — bitmap
- Casting rules:
- Implicit casts: Not supported.
- Explicit casts:
- From: BINARY, VARBINARY, ARRAY<INT>;
- To: BINARY, VARBINARY, CHAR, VARCHAR, ARRAY<INT>;
- All other explicit casts are not supported.

The BITMAP type can be declared in DDL (e.g., CREATE TABLE t (userld BITMAP, ...)).

We limit the initial scope to 32-bit integers. This covers the vast majority of practical use
cases—user/device IDs, bucketed timestamps, etc.—which can often be mapped into 32-bit
space via dictionary encoding. In contrast, 64-bit Roaring implementations lack
standardization and may introduce significant memory and serialization overhead in
streaming workloads. Should there be strong demand, 64-bit support can be introduced in
the future via a separate type BITMAPG64 or extension to BITMAP.

Public Interfaces

Bitmap Interface

The Bitmap interface serves as the unified API for both user code and Flink’s internal
components. All modifying operations (e.g., add, and, or) are performed in-place for
efficiency.

Flink provides a single built-in implementation based on RoaringBitmap. Custom
implementations of this interface are not supported and will be rejected at runtime to ensure
serialization safety and compatibility. Users requiring direct access to RoaringBitmap’s
advanced features can operate on an external RoaringBitmap instance and convert it to
Flink’s Bitmap via Bitmap.fromRoaring() (which performs a deep copy).

Bitmap

package org.apache.flink.types.bitmap;

@Link

public interface Bitmap {

Bitmap

void add(int value);

/** Adds all integers in [rangeStart,rangeEnd) to the bitmap. */
void add(long rangeStart, long rangeEnd);

/**
* Adds the first n elements of the specified array starting at the
* specified offset.
*/

void addN(int[] values, int offset, int n);

/**
* Performs an in-place Logical AND (intersection) operation with another
* bitmap.
k
* <p>Does nothing if {@code other} 1is null.
*/
void and(@Nullable Bitmap other);

Vi
* Performs an in-place lLogical AND-NOT (difference) operation with another
* bitmap, which is equivalent to {@code this AND (NOT other)}.

*

* <p>Does nothing if {@code other} 1is null.
*/
void andNot(@Nullable Bitmap other);

/** Resets to an empty bitmap. */
void clear();

/** Checks whether the value appears in the bitmap. */
boolean contains(int value);

/** Gets the number of distinct values in the bitmap. */
int getCardinality();

/X%
* Gets the number of distinct values in the bitmap. This returns a full
* 64-bit result.

*/
long getLongCardinality();

/** Checks whether the bitmap is empty. */
boolean isEmpty();

Vi
* Performs an in-place logical OR (union) operation with another bitmap.
*

Bitmap

* <p>Does nothing if {@code other} 1is null.
*/
void or(@Nullable Bitmap other);

/** Removes the value from the bitmap. */
void remove(int value);

/%
* Converts the bitmap to an array of 32-bit integers, the values are sorted
* by {@link Integer#compareUnsigned}. Avoid calling this method if the
* bitmap is too Llarge.

*/
int[] toArray();

Converts the bitmap to an array of bytes.

href="https://github.com/RoaringBitmap/RoaringFormatSpec">32-bit
RoaringBitmap format specification.
*/
byte[] toBytes();

*
*
* <p>Following the format defined in <a
*
*

/**
* Converts the bitmap to a string, the values are sorted by {@Link
* Integer#compareUnsigned}. The string will be truncated and end with "..."
* if it is too Llong.
*
* <p>For example:
*k
*
* {@code "{}"}, {@code "{1,2,3,4,5}"}
* Negative values (converted to unsigned): {@code
e "{0,1,4294967294,4294967295}"}
* «String too long: {@code "{1,2,3,...}"}
*
*/

String toString();

/**
* Performs an in-place logical XOR (symmetric difference) operation with

* another bitmap.
k

* <p>Does nothing 1if {@code other} is null.
*/
void xor(@Nullable Bitmap other);

1/ StaticiMethod s s In s o is s o o o o o e o o s s s

Bitmap

/** Gets an empty bitmap. */
static Bitmap empty() {}

/** Gets a copied bitmap. Returns null if {@code other} is null. */
static Bitmap from(Bitmap other) {}

Vi
* Gets a bitmap from an array of bytes. Returns null if {@code bytes} 1is
* null.

* <p>Following the format defined in <a
* href="https://github.com/RoaringBitmap/RoaringFormatSpec">32-bit
* RoaringBitmap format specification.
*/
static Bitmap fromBytes(byte[] bytes) {}

Vit
* Gets a bitmap from an array of values. Returns null if {@code values} 1is
* null.
*/

static Bitmap fromArray(int[] values) {}

/**
* Gets a bitmap by copying the content of the given {@Link RoaringBitmap}.
* Returns null if {@code roaringBitmap} 1is null.
*/

static Bitmap fromRoaring(RoaringBitmap roaringBitmap) {}

DataStream API

Types

package org.apache.flink.api.common.typeinfo;

@PublicEvolving
public class Types {

Via
* Returns type information for {@Link Bitmap}. Supports a null
* value.
*/
public static final TypeInformation<Bitmap> BITMAP =
BitmapTypeInfo.INSTANCE;

Types

BitmapTypelnfo

package org.apache.flink.api.common.typeinfo;
@Link
public class BitmapTypeInfo extends TypeInformation<Bitmap> {

public static final BitmapTypeInfo INSTANCE = new BitmapTypeInfo();

Table AP1/ SQL

ArrayData

package org.apache.flink.table.data;

public interface ArrayData {

Bitmap getBitmap(int pos);

RowData

package org.apache.flink.table.data;

public interface RowData {

Bitmap getBitmap(int pos);

DataTypes

package org.apache.flink.table.api;

@PublicEvolving
public final class DataTypes {

* Data type of bitmap data.
* <p>The type supports storing 32-bit integers in a compressed form.

* @see BitmapType
*/
public static DataType BITMAP() {
return new AtomicDataType(new BitmapType());

The default conversion class of BitmapType is Bitmap.

BitmapType

package org.apache.flink.table.types.logical;

/**
* Data type of bitmap data.
*
* <p>This type supports storing 32-bit integers in a compressed form. This can
* be useful for efficiently representing and querying large sets of integers.
*
* <p>The serializable string representation of this type is {@code BITMAP}.
*/
@PublicEvolving
public final class BitmapType extends LogicalType {

LogicalTypeRoot

package org.apache.flink.table.types.logical;

@PublicEvolving
public enum LogicalTypeRoot {

BITMAP(LogicalTypeFamily.EXTENSION);

LogicalTypeRoot

}

Built-in Functions

The initial set of built-in functions for the BITMAP type consists of 15 (4 agg, 11 scalar)
functions, covering construction, logical operations, and output conversion. Additional
operations such as point/range queries and iteration can be added in the future based on

user feedback.

All function names are uniformly prefixed with “bitmap_". This follows the industry
standard—most systems use either “bitmap_" (ClickHouse, Doris, StarRocks) or “rb_" (some
PostgreSQL extensions) as the prefix for bitmap operations.

SQL

Table API

Description

BITMAP_BUILD_AGG(value)

value.bitmapBuild
Agy()

Aggregates 32-bit integers into a
bitmap.

BITMAP_AND_AGG(bitmap)

bitmap.bitmapAn
dAgg()

Aggregates the AND (intersection)
of multiple bitmaps.

BITMAP_OR_AGG(bitmap)

bitmap.bitmapOr
Agg()

Aggregates the OR (union) of
multiple bitmaps.

BITMAP_XOR_AGG(bitmap)

bitmap.bitmapXor
Agg()

Aggregates the XOR (symmetric
difference) of multiple bitmaps.

BITMAP_BUILD(array)

array.bitmapBuild
()

Creates a bitmap from an array of
32-bit integers.

BITMAP_CARDINALITY (bitmap)

bitmap.bitmapCar
dinality()

Returns the 32-bit cardinality of a
bitmap.

BITMAP_LONG_CARDINALITY (bitmap)

bitmap.bitmapLon
gCardinality()

Returns the 64-bit cardinality of a
bitmap.

BITMAP_AND(bitmap1, bitmap2)

bitmap1.bitmapA
nd(bitmap2)

Computes the AND (intersection)
of two bitmaps.

BITMAP_OR(bitmap1, bitmap2)

bitmap1.bitmapOr
(bitmap?2)

Computes the OR (union) of two
bitmaps.

BITMAP_XOR(bitmap1, bitmap2)

bitmap1.bitmapX
or(bitmap2)

Computes the XOR (symmetric
difference) of two bitmaps.

BITMAP_ANDNOT (bitmap1, bitmap2)

bitmap1.bitmapA
ndnot(bitmap2)

Computes the AND NOT
(difference) of two bitmaps.

SQL Table API Description

BITMAP_FROM_BYTES(bytes) bytes.bitmapFrom | Converts an array of bytes to a
Bytes() bitmap following the standard
32-bit RoaringBitmap binary
format[6].
BITMAP_TO_BYTES(bitmap) bitmap.bitmapToB | Converts a bitmap to an array of
ytes() bytes following the standard 32-bit
RoaringBitmap binary format.
BITMAP_TO_ARRAY (bitmap) bitmap.bitmapToA | Converts a bitmap to an array of
rray() 32-bit integers, the values are
sorted by
Integer.compareUnsigned.
BITMAP_TO_STRING(bitmap) bitmap.bitmapToS | Converts a bitmap to a string, the
tring() values are sorted by

Integer.compareUnsigned. The
string will be truncated and end
with "..." if it is too long.

Proposed Changes

Format and Conversions

Serialization Format

The BITMAP type uses the standard 32-bit RoaringBitmap binary format for serialization.
This ensures:

- Full interoperability with systems like ClickHouse, StarRocks, and Doris;

- Compatibility across Flink versions;

- No Flink-specific headers or magic bytes.

The RoaringBitmap binary format was extended in library version 0.5.0 with the introduction
of run containers to better compress consecutive integers. Bitmaps serialized by Flink may
contain run containers and cannot be read by systems using RoaringBitmap of lower
versions.

Output Conversions

Values added to Bitmap String Array

(Java int, in order) Bitmap#toString() Bitmap#toArray()
- Ris I

4,1,0 “{0,1,4} [0,1,4]
-1,-3,0,2 “{0,2,4294967293,4294967295}" | [0,2,-3,-1]

Values added to Bitmap String Array

(Java int, in order) Bitmap#toString() Bitmap#toArray()
0,1,2,...,,1000000 40,1,2<,..>,..7 [0,1,2<,...>,1000000]
* The values are sorted by Integer.compareUnsigned.
* String output will be truncated and end with “...” if it is too long.

* <,...> denotes omitted middle elements.
Internal Implementation Details

RoaringBitmap32Data is the internal implementation of Bitmap, which wraps the widely used
RoaringBitmap library. We plan to depend on RoaringBitmap v1.5.3 (the latest stable
version available on GitHub[7]). Due to ongoing publishing issues in the RoaringBitmap
community[7], the latest versions are not available on Maven Central. Following the official
recommendation in the GitHub repository, we will use JitPack to depend on v1.5.3.

Flink guarantees that serialized bitmaps produced by its own operations are valid, and
therefore does not perform additional validation during deserialization to avoid
unnecessary overhead. If bitmap data originates from external systems or has been
modified outside of Flink, the validation responsibility lies with those external systems.

For future version upgrades, we will adopt a conservative approach and only upgrade
when new releases address issues relevant to Flink's usage scenarios.

pom.xml (flink-core)

<dependencies>
<dependency>
<groupId>com.github.RoaringBitmap.RoaringBitmap</groupId>
<artifactId>roaringbitmap</artifactId>
<version>1.5.3</version>
</dependency>
</dependencies>

<repositories>
<repository>
<id>jitpack.io</id>
<url>https://jitpack.io</url>
</repository>
</repositories>

RoaringBitmap32Data

package org.apache.flink.types.bitmap;

RoaringBitmap32Data

@Link

public final class RoaringBitmap32Data implements Bitmap {

private final RoaringBitmap roaringBitmap;

BitmapSerializer

package org.apache.flink.api.common.typeutils.base;
@Link
public class BitmapSerializer extends TypeSerializerSingleton<Bitmap> {

public static final BitmapSerializer INSTANCE = new BitmapSerializer();

Work Plan

Phase 1: Core Functionality
1. Support BITMAP type in Calcite parser
2. Introduce Bitmap type for DataStream API
3. Introduce BITMAP type for Table API/SQL
4. Add BITMAP built-in functions
5. Add documentation and example for BITMAP type

Phase 2: Extended Ecosystem Support
6. Add more cast rules from/to BITMAP
7. Support BITMAP type in Parquet and other formats
8. Support BITMAP type for Python UDF
9.

Performance Considerations

Large Bitmap Storage

Although the BITMAP type provides significant compression for integer sets, its actual
memory footprint depends heavily on data distribution and cannot be precisely estimated. In
the worst case—when storing sparse, randomly distributed integers across the full 32-bit
range (excluding negative values)—a serialized bitmap may occupy up to approximately
250MB of memory.

Best Practice: BITMAP achieves optimal compression with consecutive or clustered
integers. Such data patterns can be efficiently compressed by RoaringBitmap's run
containers. Consider using dictionary encoding or bucketing strategies to transform your
data into consecutive ranges when possible.

State Access Overhead

Since BITMAP is stored as a single serialized object in Flink's state backend, every state
access requires full deserialization, and every update requires full serialization. For large
bitmaps, this serialization overhead can become noticeable in high-throughput streaming
aggregations.

Mitigation Strategies:
- Enable mini-batch aggregation: Reduce state access frequency by buffering multiple
records before updating state;
- Use multi-level aggregation: Pre-aggregate at finer granularity (e.g., per minute)
before computing coarser aggregations (e.g., per hour), as demonstrated in the
example.

Example

Per-Minute UV with Bitmap Storage for Flexible Analysis

CREATE TABLE user_events (

user_id INT,

tag STRING,

event_time TIMESTAMP(3),

WATERMARK FOR event_time AS event_time - INTERVAL '5' SECOND
) WITH (

'connector' = 'kafka',

)s

CREATE TABLE minute_bitmaps (
window_start TIMESTAMP(3),
tag STRING,

Per-Minute UV with Bitmap Storage for Flexible Analysis

user_bitmap BYTES,

WATERMARK FOR window_start AS window_start - INTERVAL '1' MINUTE
) WITH (

"connector' = 'jdbc',

)s

CREATE TABLE hourly_common_uv (
hour_start TIMESTAMP(3),
common_uv INT

) WITH (

'connector' = 'jdbc',

)5

EXECUTE STATEMENT SET
BEGIN

INSERT INTO minute_bitmaps
SELECT
window_start,
tag,
BITMAP_TO BYTES(BITMAP_BUILD AGG(user_id)) AS user_bitmap
FROM TABLE(
TUMBLE(TABLE user_events, DESCRIPTOR(event_time), INTERVAL '1' MINUTE)

)
GROUP BY window_start, tag;

INSERT INTO hourly_common_uv
SELECT
window_start AS hour_start,
BITMAP_CARDINALITY/(
BITMAP_AND(
BITMAP_OR_AGG(BITMAP_FROM_BYTES(user_bitmap)) FILTER (WHERE tag = 'A'),
BITMAP_OR_AGG(BITMAP_FROM_BYTES(user_bitmap)) FILTER (WHERE tag
)
) AS common_uv
FROM TABLE(
TUMBLE (TABLE minute_bitmaps, DESCRIPTOR(window_start), INTERVAL '1' HOUR)

)
GROUP BY window_start;

1
v~]
~

END;

Compatibility, Deprecation, and Migration Plan

This FLIP integrates a new data type in Flink, and it is fully backward compatible.

Test Plan

The change will be covered with unit and integration tests.

Rejected Alternatives

None.

Future Works

Flink-specific RoaringBitmap

To enable deeper customization, we plan to integrate a modified version of the
RoaringBitmap source code directly into Flink’s codebase (under appropriate licensing). This
would allow us to:

- Perform low-level operations on internal containers, such as direct access, partial
updates, or custom container types, which are not exposed through the current
black-box wrapper;

- Support efficient incremental processing for COUNT(DISTINCT) aggregations;

- Evolve the implementation independently while maintaining compatibility with the
standard Roaring serialization format for interoperability with external systems.

Optimized State Access

In current bitmap-based aggregations, such as BITMAP_BUILD_AGG, the entire bitmap is
deserialized from state on every access, even for operations that only affect a small portion
of the data. Since the RoaringBitmap is composed of independent containers (each < 8 KB),
we plan to explore storing it as a sharded structure like MapState<Key, Container>. This
would enable:
- Lazy, partial deserialization: Only the relevant containers are loaded during runtime
operations;
- Reduced CPU and memory pressure during stateful processing, especially for large
bitmaps;
- Faster per-record processing in aggregation functions, as most operations touch only
a few containers.

Extended Query and Iteration Capabilities

The initial BITMAP implementation focuses on core aggregation and set operations. Future
enhancements may include:
- Point queries: BITMAP_CONTAINS() for point lookups;

- Range queries: BITMAP_MIN(), BITMAP_MAX(), BITMAP_RANGE();

- lterator support: Efficient streaming iteration over bitmap elements without full
materialization via toArray();

- Batch operations: BITMAP_REMOVE_RANGE(), BITMAP_FLIP() for bulk
modifications;

- Advanced predicates: BITMAP_INTERSECTS() for fast intersection checks without
computing the full result.

These extensions would enable more flexible bitmap manipulation and complex analytical
queries.

Reference

[1] hitps://roaringbitmap.org/
[2] hitps://clickhouse.com/docs/sql-reference/functions/bitmap-functions

[3] hitps://docs.starrocks.io/docs/sql-reference/data-types/other-data-types/BITMAP/
[4]

https://doris.apache.org/docs/3.x/sql-manual/basic-element/sql-data-types/aggregate/BITMA
P

[_5] https://github.com/ChenHuajun/pg_roaringbitmap
[6] https://github.com/RoaringBitmap/RoaringFormatSpec

[7] https://github.com/RoaringBitmap/RoaringBitmap
[8] https://github.com/RoaringBitmap/RoaringBitmap/issues/749

https://roaringbitmap.org/
https://clickhouse.com/docs/sql-reference/functions/bitmap-functions
https://docs.starrocks.io/docs/sql-reference/data-types/other-data-types/BITMAP/
https://doris.apache.org/docs/3.x/sql-manual/basic-element/sql-data-types/aggregate/BITMAP
https://doris.apache.org/docs/3.x/sql-manual/basic-element/sql-data-types/aggregate/BITMAP
https://github.com/ChenHuajun/pg_roaringbitmap
https://github.com/RoaringBitmap/RoaringFormatSpec
https://github.com/RoaringBitmap/RoaringBitmap
https://github.com/RoaringBitmap/RoaringBitmap/issues/749

	FLIP-556: Introduce BITMAP Data Type
	Motivation
	BITMAP Semantics
	Public Interfaces
	Bitmap Interface
	DataStream API
	Table API / SQL
	Built-in Functions

	Proposed Changes
	Format and Conversions
	Serialization Format
	Output Conversions

	Internal Implementation Details
	Work Plan
	Performance Considerations
	Large Bitmap Storage
	State Access Overhead

	Example
	Compatibility, Deprecation, and Migration Plan
	Test Plan
	Rejected Alternatives
	Future Works
	Flink-specific RoaringBitmap
	Optimized State Access
	Extended Query and Iteration Capabilities

	Reference

