

LABORATORY VII – THE ESP32 DEV BOARD & WI-FI

​​1. Introduction

The purpose of this laboratory work is to introduce to you a new development board, based on
the ESP32 microcontroller. This microcontroller supports the wireless connections Wi-Fi,
Bluetooth, and Bluetooth Low Energy (BLE), making it suitable for IoT applications. The
microcontroller has two 240 MHz cores, each one equipped with a Tensilica Xtensa LX6 32 bit
microprocessor, and is able to work in industrial environments with temperatures ranging from
-40 to 125 degrees Celsius. ESP32 has a low power consumption, between 160mA and 260mA.

Besides the active mode, the microcontroller also has four Low Power modes, including the
Deep Sleep mode which requires less than 0.15 mA.

The ESP32 microcontroller is also equipped with the wired serial communication interfaces SPI,
I2C and UART.

The development board must be powered by a voltage between 2.3 V and 3.6 V, and its pins
will not accept a 5 V voltage. Usually, the power voltage is stabilized at 3.3 V.

The development board that we’ll use in this lab is ESP32 Devkit V1, shown in Figure 1. The
programmer can use the general purpose I/O pins for digital input and output (GPIO) or for
reading analog signals (ADC), or for interfacing devices using the serial interfaces SPI (blue),
I2C (pink) or UART (yellow).

Figure 1. The ESP32 Devkit V1 development board and its pins.

1 Lab 7

​​2. The physical setup for the laboratory activities

For convenience and for preventing damage during the laboratory activities, the ESP32 boards
are included into pre-built hardware setups, which include:

-​ The ESP-WROOM-32 V1 development board
-​ A SSD1306 OLED Display, connected to the ESP board via the I2C interface
-​ A YwRobot 545043 power supply, so that you can use external power supplies
-​ A 30 x (10 + 4) breadboard

The built setup is shown in Figure 2, and the schematic is shown in Figure 3.

Figure 2. The pre-built hardware setup, based on ESP 32.

2 Lab 7

Figure 3. The diagram of the pre-built hardware setup.

​​
​​Display

The SSD1306 is the model of the controller for the Organic Light Emitting Diode (OLED) display
panel on the module. It encompasses the signals necessary to drive the display, includes
contrast control, an internal RAM and 256 levels adjustable brightness.

Figure 4. The OLED display.

3 Lab 7

The OLED display is a dot-matrix display that supports 128 columns along with 32 rows to
display any manner of graphics, and has strong community support for creating fonts and for
transforming images to the compatible format for the display.

The display communicates with the ESP32 development board via I2C, and supports both 3.3
and 5 V for the VCC power pin.

​
Power Supply

The YwRobot 545043 power supply is based on the MB V2 design and is meant to be a power
supply specifically for breadboards.

It can be powered via a standard barrel (5.5mm outer (total) diameter x 2.1mm inner diameter)
plug connector with 6.5 - 12 V (DC) and is capable of supplying either 3.3 V or 5 V (DC) with a
maximum of 700 mA, for a maximum power output of 3.5 W on two different rails.

Figure 5. The breadboard power adapter.

Both rails can be configured independently with the help of jumpers (the jumpers select the
voltage to be delivered to the rails, 3.3 V, 5 V, or OFF. Please do not move the jumpers, as they
are configured 3.3V, suitable for ESP32). There is an additional USB type A port for powering
other devices. This port is output only, it cannot be used as power input.

The power supply has a push button for turning it ON / OFF, and a LED status indicator that
shows as to whether there’s any current flowing through the system.

4 Lab 7

​​Breadboard
​​

The breadboard used in the setup is often referred to as a “half-size breadboard”, since it “only”
has thirty rows (1 – 30), along with fourteen (a – e + f – j + 2 x (+,-)) columns for connecting
pins.

Contrary to the previously used breadboard here at the labs, this one has dedicated VCC and
GND columns on the two edges, where the pins are connected vertically in columns, instead of
rows. The remaining pins in between are connected as usual, meaning horizontally, split into
two parts.

The picture below highlights the individual connections, meaning the two vertically connected
sets of pins – blue for the minus (-) and red for the plus (+) – and the horizontally connected
ones, – green for columns a – e and the other half, yellow for columns f – j.

Figure 6. The breadboard with power rails.

Please note, that the split in the middle is not just meant to serve as a visual aid, but it denotes
a split in the connections as well. E.g. in case a certain signal is connected by a wire to one of
the E pins, then the rest of the pins in that row, meaning A – D, will have the same signal, but
the ones on the other side (F - J) will not.

5 Lab 7

​​3. Setting up the Arduino environment for ESP32

Driver for Windows:​
https://www.silabs.com/documents/public/software/CP210x_Windows_Drivers.zip

Arduino IDE v1.x

The Arduino IDE is able to work with the new development board, but it needs to be configured. For

installing the ESP32 board family, open the File / Preferences menu, and open the Additional Boards
Manager URLs list, and type the following link:

https://dl.espressif.com/dl/package_esp32_index.json

The next step is to open the Tools / Board/Board Manager menu, to search for the ESP32 board
family by Espressif Systems, and to install the latest version of the software.

The installation steps are shown in Figure 7.

6 Lab 7

https://www.silabs.com/documents/public/software/CP210x_Windows_Drivers.zip

7 Lab 7

Figure 7. Setting the ESP32 boards with Arduino IDE v1.x.

After the installation is complete, you have to restart the Arduino IDE, and a new family of
boards will become available in the menu Tools / Board / ESP 32 Arduino. From the list, you
must select the board DOIT ESP32 DEVKIT V1.

Arduino IDE v2.x

From the left vertical menu, click on the board manager icon, which will expand an additional
panel for you. Afterwards, type “ESP32” into the search box, then install the “esp32 by Espressif
Systems” library, as shown below in Figure 8.

Once the installation is complete, click on the board selector at the top, then on “select other
board and port”.

At the board selection dialog, enter the search term “doit”, and select the DOIT ESP32 DEVKIT
V1.

8 Lab 7

9 Lab 7

Figure 8. Setting the ESP32 boards with Arduino IDE v2.x.

10 Lab 7

​​4. Programming the ESP32 board

Connect the board to the PC using the Micro USB cable. Select the proper serial port from the
Tools menu of the Arduino IDE, and the proper board type (see previous chapter).

Type or paste the program in the Arduino IDE, and then use the same “Upload” command that
you have used before to compile the program and write it to the board.

To test that the board and the upload mechanism is working, you can use a simple Blink
program, which will turn on and off an on-board LED connected to digital pin 2.

void setup() {

 pinMode(2, OUTPUT);

}

void loop() {

 digitalWrite(2, 1);

 delay (500);

 digitalWrite(2,0);

 delay(500);

}

The upload process for the ESP32 boards takes more time than the similar process on the AVR
Arduino boards. If the error “Wrong boot mode detected (0x13)! The chip needs to be in
download mode.” appears during the upload process, you must press the BOOT button on the
ESP32 board after the “Connecting…” message is displayed, and keep it pressed until the
“Writing…” lines are displayed. After the “Writing… “ messages are shown, you can release the
BOOT button, and wait until the process is completed.

A successful upload will have the console look like the one in Figure 9.

11 Lab 7

Figure 9. Console messages after a successful program upload to ESP32.

If your program uses Serial for input/output, and after you open the Serial Monitor no message
appears, you may need to reset the board by pressing the Reset button.

​​5. Demo program for the OLED display

In order to use the SSD1306 OLED display, you will have to first install a corresponding library
that supports it. For this, the Adafruit SSD1306 library is recommended, since it has good
support for the controller.

Figure 10. Install the “Adafruit SSD1306” library from the IDE’s library manager.

12 Lab 7

The following demo code is also available online at​
https://github.com/UTCN-AC-CS-DMP/Lab-7-ESP32-Part-1/blob/main/Lab_7_OLED_only.ino

#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>

#define SCREEN_WIDTH 128 // OLED display width, in pixels
#define SCREEN_HEIGHT 32 // OLED display height, in pixels

// Declaration for an SSD1306 display connected to I2C (SDA, SCL pins)
// The pins for I2C are defined by the Wire-library.
// On Arduino UNO: A4(SDA), A5(SCL)
// On Arduino MEGA: 20(SDA), 21(SCL)
// On ESP 32: 21 (SDA), 22 (SCL)
#define OLED_RESET -1
// Reset pin # (or -1 if sharing Arduino reset pin)
#define SCREEN_ADDRESS 0x3C
// The I2C address for OLED, 0x3D for 128x64, 0x3C for 128x32
Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire,
 OLED_RESET);

#define LOGO_WIDTH 128
#define LOGO_HEIGHT 32
// 'logo_utcn', 128x32px
static const unsigned char PROGMEM logo_bmp[] = {
 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc0, 0x00, 0x3f,
 0x80, 0x00, 0x7f, 0x00, 0x00, 0xfe, 0x00, 0x01, 0xfc, 0x00, 0x03, 0xff,
 0xff, 0xfe, 0x07, 0xff, 0xfc, 0x0f, 0xff, 0xf8, 0x1f, 0xff, 0xf0, 0x3f,
 0xff, 0xe0, 0x7f, 0xff, 0xff, 0xc2, 0x04, 0x3f, 0x84, 0x08, 0x7f, 0x08,
 0x10, 0xfe, 0x10, 0x21, 0xfc, 0x20, 0x43, 0xff, 0xff, 0xc2, 0x04, 0x3f,
 0x84, 0x08, 0x7f, 0x08, 0x10, 0xfe, 0x10, 0x21, 0xfc, 0x20, 0x43, 0xff,
 0xff, 0xc2, 0x04, 0x3f, 0x84, 0x08, 0x7f, 0x08, 0x10, 0xfe, 0x10, 0x21,
 0xfc, 0x20, 0x43, 0xff, 0xff, 0xc2, 0x04, 0x3f, 0x84, 0x08, 0x7f, 0x08,
 0x10, 0xfe, 0x10, 0x21, 0xfc, 0x20, 0x43, 0xff, 0xff, 0xc2, 0x04, 0x3f,
 0x84, 0x08, 0x7f, 0x08, 0x10, 0xfe, 0x10, 0x21, 0xfc, 0x20, 0x43, 0xff,
 0xff, 0xe2, 0x04, 0x7f, 0xc4, 0x08, 0xff, 0x88, 0x11, 0xff, 0x10, 0x23,
 0xfe, 0x20, 0x47, 0xff, 0xff, 0xe2, 0x04, 0x7f, 0xc4, 0x08, 0xff, 0x88,
 0x11, 0xff, 0x10, 0x23, 0xfe, 0x20, 0x47, 0xff, 0xff, 0xf2, 0x04, 0xff,
 0xe4, 0x09, 0xff, 0xc8, 0x13, 0xff, 0x90, 0x27, 0xff, 0x20, 0x4f, 0xff,
 0xff, 0xfa, 0x05, 0xff, 0xf4, 0x0b, 0xff, 0xe8, 0x17, 0xff, 0xd0, 0x2f,
 0xff, 0xa0, 0x5f, 0xff, 0xff, 0xfe, 0x07, 0xff, 0xfc, 0x0f, 0xff, 0xf8,
 0x1f, 0xff, 0xf0, 0x3f, 0xff, 0xe0, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff,
 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe1, 0xf1,
 0xff, 0xf8, 0x00, 0x7f, 0xff, 0xc0, 0xff, 0xff, 0x0f, 0x0f, 0xff, 0xff,
 0xff, 0xff, 0xe1, 0xf1, 0xff, 0xf8, 0x00, 0x7f, 0xff, 0x00, 0x7f, 0xff,
 0x07, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xe1, 0xf1, 0xff, 0xff, 0x87, 0xff,
 0xfe, 0x1e, 0x7f, 0xff, 0x07, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xe1, 0xf1,
 0xff, 0xff, 0x87, 0xff, 0xfe, 0x3f, 0x7f, 0xff, 0x03, 0x0f, 0xff, 0xff,
 0xff, 0xff, 0xe1, 0xf1, 0xff, 0xff, 0x87, 0xff, 0xfc, 0x3f, 0xff, 0xff,
 0x01, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xe1, 0xf1, 0xff, 0xff, 0x87, 0xff,
 0xfc, 0x7f, 0xff, 0xff, 0x11, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xe1, 0xf1,

13 Lab 7

https://github.com/UTCN-AC-CS-DMP/Lab-7-ESP32-Part-1/blob/main/Lab_7_OLED_only.ino

 0xff, 0xff, 0x87, 0xff, 0xfc, 0x7f, 0xff, 0xff, 0x10, 0x0f, 0xff, 0xff,
 0xff, 0xff, 0xe1, 0xf1, 0xff, 0xff, 0x87, 0xff, 0xfc, 0x7f, 0xff, 0xff,
 0x18, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xf1, 0xf1, 0xff, 0xff, 0x87, 0xff,
 0xfc, 0x3f, 0xff, 0xff, 0x1c, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xf1, 0xf1,
 0xff, 0xff, 0x87, 0xff, 0xfc, 0x3f, 0x7f, 0xff, 0x1c, 0x0f, 0xff, 0xff,
 0xff, 0xff, 0xf0, 0xe1, 0xff, 0xff, 0x87, 0xff, 0xfe, 0x1e, 0x7f, 0xff,
 0x1e, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xf8, 0x03, 0xff, 0xff, 0x87, 0xff,
 0xff, 0x00, 0x7f, 0xff, 0x1e, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xfc, 0x0f,
 0xff, 0xff, 0x87, 0xff, 0xff, 0xc0, 0xff, 0xff, 0x1f, 0x0f, 0xff, 0xff,
 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};

void setup() {
 Serial.begin(9600);
 // SSD1306_SWITCHCAPVCC = generate display voltage from 3.3V internally
 if (!display.begin(SSD1306_SWITCHCAPVCC, SCREEN_ADDRESS)) {
 Serial.println(F("SSD1306 allocation failed"));
 for (;;)
 ; // Don't proceed, loop forever
 }

 // Clear the buffer
 display.clearDisplay();

 // Draw demo logo
 testDrawUTCNLogo();

 // Write sample string to different rows
 writeTextSSD1306("First line", 0, 1, true);
 writeTextSSD1306("Another string below", 8, 1, false);
 // 3 second delay
 delay(3000);
 // Larger font size with automatic line break
 writeTextSSD1306("Auto line break", 0, 2, true);

 delay(3000);

 display.setCursor(0, 0);
 display.clearDisplay();

 display.write("Waiting");
}

int c = 0;

void loop() {

 display.write(".");
 display.display();

 delay(1000);

 c++;

 if (c > 13) {

14 Lab 7

 display.clearDisplay();
 display.setCursor(0, 0);
 c = 0;
 }
}

void writeTextSSD1306(const String &message, const uint8_t rowNum, const uint8_t textSize,
const bool clearDisp)
{
 if (clearDisp) {
 display.clearDisplay();
 }

 display.setTextSize(textSize);
 display.setTextColor(SSD1306_WHITE); // Draw white text
 // Specify location to display message
 display.setCursor(0, rowNum);
 // Use full 256 char 'Code Page 437' font
 display.cp437(true);
 display.write(message.c_str());
 display.display();
}

void testDrawUTCNLogo(void) {
 display.clearDisplay();

 display.drawBitmap(0, 0, logo_bmp, LOGO_WIDTH, LOGO_HEIGHT, WHITE);
 display.display();
 delay(3000);
}

Highlights: the program is centered around the display object, of the Adafruit_SSD1306 class. The

constructor of the class takes as parameters the width and height of the display and the pointer to the

Wire object used for I2C communication. The initialization of the display object receives as parameter

the I2C address of the display, which is currently 0x3C.

The display object can be cleared by the method clearDisplay, can set the cursor for text output using

setCursor, can configure the text size by setTextSize, and can write a message using write. A graphical

image can be written using the method drawBitmap.

​​6. Demo program for WiFi (ESP32 as access point)

The code is also available online at​
https://github.com/UTCN-AC-CS-DMP/Lab-7-ESP32-Part-1/blob/main/Lab_7_WiFi_only.ino

#include <WiFi.h>
#include <WiFiAP.h>

15 Lab 7

https://github.com/UTCN-AC-CS-DMP/Lab-7-ESP32-Part-1/blob/main/Lab_7_WiFi_only.ino

#include <WiFiClient.h>

// MESSAGE STRINGS
const String SETUP_INIT = "SETUP: Initializing ESP32 dev board";
const String SETUP_ERROR = "!!ERROR!! SETUP: Unable to start SoftAP mode";
const String SETUP_SERVER_START = "SETUP: HTTP server started --> IP addr: ";
const String SETUP_SERVER_PORT = " on port: ";
const String INFO_NEW_CLIENT = "New client connected";
const String INFO_DISCONNECT_CLIENT = "Client disconnected";

// HTTP headers always start with a response code (e.g. HTTP/1.1 200 OK)
// and a content-type so the client knows what's coming, then a blank line:
const String HTTP_HEADER = "HTTP/1.1 200 OK\r\nContent-type:text/html\r\n\r\n";
const String HTML_WELCOME = "<h1>Welcome to your ESP32 Web Server!</h1>";

// BASIC WIFI CONFIGURATION CONSTANTS
// The SSID (Service Set IDentifier), in other words, the network's name
const char *SSID = "<your_unique_SSID>";
// Password for the network
// By default the ESP32 uses WPA / WPA2-Personal security, therefore the
// the password MUST be between 8 and 63 ASCII characters
const char *PASS = "<your_password_here>";
// The default port (both TCP & UDP) of a WWW HTTP server number according to
// RFC1340 is 80
const int HTTP_PORT_NO = 80;

// ADDITIONAL GLOBALS
// Initialize the HTTP server on the ESP32 board
WiFiServer HttpServer(HTTP_PORT_NO);

void setup() {
 Serial.begin(9600);

 if (!WiFi.softAP(SSID)) {
​ // replace with if (!WiFi.softAP(SSID, PASS)) to use the password
 Serial.println(SETUP_ERROR);
 // Lock system in infinite loop in order to prevent further execution
 while (1)
 ;
 }

 // Get AP's IP address for info message
 const IPAddress accessPointIP = WiFi.softAPIP();
 const String webServerInfoMessage = SETUP_SERVER_START + accessPointIP.toString()
 + SETUP_SERVER_PORT + HTTP_PORT_NO;

 // Start the HTTP server
 HttpServer.begin();
 Serial.println(webServerInfoMessage);
}

void loop() {
 WiFiClient client = HttpServer.available(); // listen for incoming clients

 if (client) { // if you get a client,
 Serial.println(INFO_NEW_CLIENT); // print a message out the serial port
 String currentLine = ""; // make a String to hold incoming data from the client
 while (client.connected()) { // loop while the client's connected
 if (client.available()) { // if there's bytes to read from the client,
 const char c = client.read(); // read a byte, then
 Serial.write(c); // print it out the serial monitor

16 Lab 7

 if (c == '\n') { // if the byte is a newline character
 // if the current line is blank, you got two newline characters in a row.
 // that's the end of the client HTTP request, so send a response:
 if (currentLine.length() == 0) {
 // Send welcome page to the client
 printWelcomePage(client);
 break;
 } else currentLine = "";
 } else if (c != '\r') { // if you got anything else but a carriage return character,
 currentLine += c; // add it to the end of the currentLine
 }
 }
 }
 // close the connection:
 client.stop();
 Serial.println(INFO_DISCONNECT_CLIENT);
 Serial.println();
 }
}

void printWelcomePage(WiFiClient client) {
 // Always start the response to the client with the proper headers
 client.println(HTTP_HEADER);

 // Send the relevant HTML
 client.print(HTML_WELCOME);

 // The HTTP response ends with another blank line
 client.println();
}

Code highlights and warnings: any WiFi access point has a unique identifier, its SSID, and can
be secured with a password. Please ensure that you will set a SSID that is unique to you, and
easily recognizable, as duplicate SSIDs will cause errors in the WiFi network. Therefore, please
change the following line of code to ensure a unique SSID:

const char *SSID = "<your_unique_SSID>";

The connections are handled by the object HttpServer, of the class WiFiServer. The server
listens to the specified port (port 80 for the HTTP protocol) and returns a client object, of the
class WiFiClient, when a device such as a laptop or a mobile phone connects to it (by opening a
browser and typing the address of the server). The client object can read data from the
connected device, using methods similar to the Serial interface (available, read), and can also
send data using similar methods (write, print, println). The communication between the ESP32
board and the client device is a simple text communication. The programmer must format the
output text to form a valid html page, and must also parse the input text to detect the requests
from the client device.

In order to test the program, you have to upload it to the ESP32 board, and then you have to set
up your laptop or mobile phone to connect to the WiFi access point that the ESP32 board is
acting as. You will identify the board by your unique SSID. After the connection is set up, you
will open the browser and type the IP address of the board, which will be 192.168.4.1. The

17 Lab 7

server on the ESP32 board should reply with a simple welcome message, as shown in Figure
11:

Figure 11. The resulting webpage from the ESP32’s built-in webserver.

NOTE: For Apple iPhones using the Safari browser, you need to specify the protocol as well,
meaning it’s not enough to write only the IP address, since it will attempt to use HTTPS by
default. Therefore, you will have to write http://192.168.4.1 in Safari’s address bar instead of just
192.168.4.1

​​7. Individual work
​​

1.​ Run the examples, analyze the code and the explanations.
2.​ Display the status of the connection and the GET request strings received by the

WiFi web server using the OLED display.
3.​ Based on the GET request, turn on or off the board’s built in LED (hint: you can add

text after the IP address, e.g. 192.168.4.1/LedOn)
4.​ Modify the web server so that the html page sent to the user will contain links for

turning the LED on or off.

18 Lab 7

http://192.168.4.1
http://192.168.4.1

​​Bibliography

1. Description of the ESP32 microcontroller https://www.espressif.com/en/products/socs/esp32

2. The ESP32 WiFi API https://docs.espressif.com/projects/arduino-esp32/en/latest/api/wifi.html

3. SSD1306 Datasheet https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf

4. YwRobot Documentation https://static.rapidonline.com/pdf/73-4538_v1.pdf

5. Breadboard Info https://www.adafruit.com/product/64

19 Lab 7

https://www.espressif.com/en/products/socs/esp32
https://docs.espressif.com/projects/arduino-esp32/en/latest/api/wifi.html
https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
https://static.rapidonline.com/pdf/73-4538_v1.pdf
https://www.adafruit.com/product/64

	LABORATORY VII – THE ESP32 DEV BOARD & WI-FI
	​​1. Introduction
	​​2. The physical setup for the laboratory activities
	​​
	​​Display
	​Power Supply
	​​Breadboard

	
	​​3. Setting up the Arduino environment for ESP32
	Arduino IDE v1.x
	Arduino IDE v2.x

	​​4. Programming the ESP32 board
	​​5. Demo program for the OLED display
	​​6. Demo program for WiFi (ESP32 as access point)
	​​7. Individual work
	​​Bibliography

