
ERC20 API: An Attack Vector on the
Approve/TransferFrom Methods

0. Abstract
In this article we describe a possible attack vector on the standard ERC20 Ethereum
Token API. This is an attack on the API itself, not on any particular implementations,
so all conformant implementations are potentially vulnerable. The attack uses the
methods "approve" and "transferFrom" defined by ERC20. We also give some
thoughts about how the described attack could be prevented or at least mitigated
using the current version of the ERC20 API. We also suggest changes to the ERC20
API that would make the described attack impossible.

1. Introduction
ERC20 , defines a standard API for Ethereum Tokens smart contracts. Tokens are defined 1

by Ethereum Foundation as the following: 2

Tokens in the ethereum ecosystem can represent any fungible tradable good: coins,
loyalty points, gold certificates, IOUs, in game items, etc. Since all tokens implement
some basic features in a standard way, this also means that your token will be
instantly compatible with the ethereum wallet and any other client or contract that
uses the same standards.

So, ERC20 is supposed to be the standard way to implement basic features of all tokens
making them compatible with common Ethereum software such as Ethereum Wallet.

2. Approve/TransferFrom Methods
Among other things, ERC20 defines the following two methods to be implemented by every
Ethereum Token smart contract:

function transferFrom(address _from, address _to, uint256 _value)​
returns (bool success)

Send _value amount of tokens from address _from to address _to
The transferFrom method is used for a withdraw workflow, allowing contracts to
send tokens on your behalf, for example to "deposit" to a contract address and/or to
charge fees in sub-currencies; the command should fail unless the _from account

2 https://www.ethereum.org/token

1 https://github.com/ethereum/EIPs/issues/20

https://www.ethereum.org/token
https://github.com/ethereum/EIPs/issues/20

has deliberately authorized the sender of the message via some mechanism; we
propose these standardized APIs for approval:

function approve(address _spender, uint256 _value)​
returns (bool success)

Allow _spender to withdraw from your account, multiple times, up to the _value
amount. If this function is called again it overwrites the current allowance with
_value.

Apart from updating the allowance, the ERC-20 proposal does not specify the intended
semantics of multiple calls to approve.

In the following sections we will show how these two methods, as defined in ERC20, could
be used in an attack that allows a spender to transfer more tokens than the owner of the
tokens ever wanted to allow the spender to transfer.

3. Attack Scenario
Here is a possible attack scenario:

1.​ Alice allows Bob to transfer of Alice's tokens () by calling the approve 𝑁 𝑁 > 0
method on a Token smart contract, passing the Bob's address and as the method 𝑁
arguments

2.​ After some time, Alice decides to change from to () the number of Alice's 𝑁 𝑀 𝑀 > 0
tokens Bob is allowed to transfer, so she calls the approve method again, this time
passing the Bob's address and as the method arguments 𝑀

3.​ Bob notices the Alice's second transaction before it was mined and quickly sends
another transaction that calls the transferFrom method to transfer Alice's 𝑁
tokens somewhere

4.​ If the Bob's transaction will be executed before the Alice's transaction, then Bob will
successfully transfer Alice's tokens and will gain an ability to transfer another 𝑁 𝑀
tokens

5.​ Before Alice noticed that something went wrong, Bob calls the transferFrom
method again, this time to transfer Alice's tokens. 𝑀

So, an Alice's attempt to change the Bob's allowance from to (and) made 𝑁 𝑀 𝑁 > 0 𝑀 > 0
it possible for Bob to transfer of Alice's tokens, while Alice never wanted to allow so 𝑁 + 𝑀
many of her tokens to be transferred by Bob.

4. Attack Analysis
The attack described above is possible because the approve method overwrites the current
allowance regardless of whether the spender already used it or not, so there is no way to
increase or decrease allowance by certain value atomically, unless token owner is a smart
contract, rather than an account . 3

3 Unlike accounts, smart contracts may perform several operations atomically, i.e. check current
allowance and then set new one

5. Workaround
Because the described attack allows an attacker to transfer at most tokens when 𝑁 + 𝑀
the allowance is being changed from to , then, changing the allowance from to and 𝑁 𝑀 𝑁 0
then from to seems quite safe. A token owner just needs to make sure that the first 0 𝑀
transaction actually changed allowance from to , i.e. that the spender didn't manage to 𝑁 0
transfer some of allowed tokens before the first transaction was mined. Unfortunately, 𝑁
such checking does not seem to be possible via standard Web3 API , because to do the 4

check one needs to be able to analyze the changes in the storage of a smart contract made
by particular transactions, including internal transactions. Though, such checking is still
possible using advanced blockchain explorers such as EtherCamp . 5

Another way to mitigate the threat is to approve token transfers only to smart contracts with
verified source code that does not contain logic for performing attacks like described above,
and to accounts owned by the people you may trust.

6. Suggested ERC20 API Changes
This section suggests changes to ERC20 API that are supposed to make the attack
described above impossible.

6.1. Atomic "Compare And Set" Approve Method
We suggest the following method to be added to ERC20 API:

function approve(
 address _spender,
 uint256 _currentValue,
 uint256 _value)​
returns (bool success)

If current allowance for _spender is equal to _currentValue, then overwrite it
with _value and return true, otherwise return false.

This change alone is enough to address the attack vector described above. Suggestions
given below are not required, but are supposed to make usage of approve and
transferFrom methods more convenient and less error-prone.

6.2. Separate Log Message for "TransferFrom" Transfers
We suggest the following event to be added to ERC20 API:

5 https://live.ether.camp/
4 https://github.com/ethereum/wiki/wiki/JavaScript-API

https://live.ether.camp/
https://github.com/ethereum/wiki/wiki/JavaScript-API

event Transfer(​
 address indexed _spender,​
 address indexed _from,​
 address indexed _to,​
 uint256 _value)

Triggered when tokens are transferred via transferFrom method.

Note, that for backward compatibility reasons, token contracts will probably have to log both,
old three-args and new four-args Transfer events in transferFrom method.

6.3. Four-Args Approval Event
We suggest the following event to be added to ERC20 API:

event Approval(
 address indexed _owner,
 address indexed _spender,
 uint256 _oldValue,
 uint256 _value)

Triggered whenever either approve method is called.

Note, that for backward compatibility reasons, token contract will probably have to log both,
old three-args and new four-args Approval events in approve method.

7. Authors
●​ Mikhail Vladimirov <mikhail.vladimirov@gmail.com>
●​ Dmitry Khovratovich <khovratovich@gmail.com>

mailto:mikhail.vladimirov@gmail.com
mailto:khovratovich@gmail.com

	ERC20 API: An Attack Vector on the Approve/TransferFrom Methods
	0. Abstract
	1. Introduction
	2. Approve/TransferFrom Methods
	3. Attack Scenario
	4. Attack Analysis
	5. Workaround
	6. Suggested ERC20 API Changes
	6.1. Atomic "Compare And Set" Approve Method
	6.2. Separate Log Message for "TransferFrom" Transfers
	6.3. Four-Args Approval Event

	7. Authors

