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Abstract 
The Parca project wants to offer a built-in storage that is well suited for storing and querying 
profiling data on any dimension and can handle short-lived serverless or CI environments just 
as well as long-running applications. This RFC covers only the portion of the database that 
actively accepts writes, and everything detailed here is entirely in-memory. An RFC for 
persistent storage will follow. 

Problem 
The Parca server (and before it the Conprof project) has gone through various iterations of 
storage strategies including: 
 

●​ Prometheus time-series style series recording full application profiles for each timestamp 
○​ In raw bytes and later compressed via zstd 

●​ Store pre-calculated trees of profiling data to make generating iciclegraphs/flamegraphs 
simple and fast 

○​ The complexity of diffing, merging and storing trees were deemed 
unmaintainable 

●​ Time-series of stack-traces grouped by workload labels to prevent each stack trace 
being in the index 

 
All of these approaches failed to provide the flexibility for querying that we envision for the Parca 
project (separate RFC to follow). 
 
The current storage architecture resembles a time-series database a lot. The way that this 
manifests itself the most is in trying to accumulate chunks of data to be compressed together as 
a series of values. The downside of doing this is that we have a worst case active chunks/series 
of 
 
Processes x Pprof labels x Unique Stack Traces 
 
It is difficult to tell whether this ends up being a problem in reality because the number of 
stack-traces are realistically bound, but it is equivalent to the Prometheus anti-pattern of putting 
IDs into label-values. 
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Proposal 
A columnar database layout of the data could alleviate the cardinality issues, by not maintaining 
data by series at all, but rather batching many “rows” to then be written at once to persistent 
storage. A columnar database at first resembles a traditional relational database a lot, but 
contrary to it, as the name says, a columnar database stores the data by columns as opposed 
to by rows. This allows columnar databases to be excellent for data intensive operations. 

High-level In-memory Layout 
A potential columnar table layout for Parca’s profiling data could be: 
 

Column 
Name 

Type Dyna
mic 

Encoding Description 

Labels String Yes Dictionary + 
RLE 

Workload labels are those that uniquely 
identify the process that produced a profile. 
Workload labels are string columns that are 
dynamically created, meaning whenever a new 
key is seen, a new column is created to track it. 
Using this method has two advantages, arbitrary 
cardinality has the same cost as constant 
cardinality, and labels are tracked as part of the 
table directly, circumventing the need for an 
external inverted index. Each of the 
sub-columns is encoded using Dictionary 
encoding, which deduplicates the strings while 
retaining Arrow’s O(1) access guarantee. 

Stacktrace []UUID No Dictionary + 
RLE 

Stacktrace is an array of UUIDs that each 
reference a Location ID in the Metastore. 

Pprof 
string 
labels 

String Yes Dictionary + 
RLE 

Pprof string labels are the string labels 
attached to a pprof sample. Similar to workload 
labels they are string columns created 
dynamically as they are seen for the first time 
and encoded using Dictionary encoding. 

Pprof num 
labels 

Int64 Yes RLE Pprof num labels are the integer labels 
attached to a pprof sample. Because num labels 
potentially have a unit attached to them, their 
column name is composed of label-name 
concatenated with the unit. Similar to workload 
and pprof string labels, pprof num labels are 
columns that are dynamically added, but 
contrary to the others they are of type int64. 



Timestam
p 

uint64 No Plain Timestamp is the timestamp at which the 
profile as a whole was captured that this 
particular stack trace was a part of. Timestamps 
are plainly encoded. Future work might optimize 
the encoding by using double delta encoding, 
similar to the strategy of the gorilla encoding, 
since timestamps are already proposed to be 
stored in ascending order (see below), meaning 
when a new profile is inserted where all 
samples have the same timestamp they are 
likely to be inserted at different places of the 
table, so data wise timestamps are not going to 
be repeated but rather increasing in their layout. 
Similar to Prometheus, Parca and or Parca 
Agent would need to ensure to remove tiny 
amounts of jitter to increase the compression 
efficiency. 

SampleTy
pe 

String No RLE SampleType represents the type of the value, 
eg. “cpu” or “allocations”. 

SampleUn
it 

String No RLE SampleUnit represents the unit of the value, 
eg. “nanoseconds” or “bytes”. 

PeriodTyp
e 

String No RLE PeriodType represents the type of events 
between sampled occurrences. e.g "cpu" or 
"heap”. 

PeriodUnit String No RLE PeriodUnit represents the unit of events 
between sampled occurrences. e.g "cycles" or 
"bytes”. 

Duration int64 No RLE Duration represents the duration over which the 
profile was taken. 

Period int64 No RLE Period the number of events between sampled 
occurrences. 

TraceID String No Plain TraceID, in order to correlate tracing data 
directly with profiling data. 

Value int64 No Plain Value is the observed occurrences of the stack 
trace (talking about an example of a CPU 
profile). More generally it is the value attached 
to the stack trace. 
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All columns except duration, period and value make up the primary key, like we know from 
relational databases. When inserted all data is immediately sorted by the primary key in order 
of: 
 

●​ SampleType 
●​ SampleUnit 
●​ PeriodType 
●​ PeriodUnit 
●​ Workload labels 
●​ Stacktrace 
●​ Timestamp 
●​ Pprof string labels 
●​ Pprof num labels 

 
This sorting is just a proposal where the theory is that retrieving data for merging, single selects 
as well as stack trace searches are balanced. It is unclear what sorting is most optimal, 
therefore the implementation should be flexible enough to modify this afterwards. Another 
possibility for performance optimization could be to store the data in multiple layouts. 
 
See example input data, their logical and physical representation in the accompanying table. 

Columnar Storage Design 
Everything in the design relies on writes to the column store to be in the order declared by the 
schema. With this property, an insert requires at most a single pass over the sparse index, 
which is held in memory. 
 
Writes are buffered in small chunks and regularly compacted into larger chunks, these chunks 
have a lower and upper bound of the sorted column values, these are called granules going 
forward in this design. Essentially an LSM-tree. For a start a simple B-Tree can be used such as 
the Go btree implementation by Google, building a sparse index similar to that of ClickHouse. If 
the performance of this btree implementation ends up being prohibitive, a Bw-Tree might be a 
good fit as it is designed with modern hardware in mind. 
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The start of each granule is part of the index. From blank, the storage starts with a single 
granule, and every time a granule grows over the specified rows or byte size it is split into two. 
Thus adding 1 more entry to the index (as the initial granule already had one). In the in-memory 
representation, each granule has X rows, which depending on the encoding of the column is 
inserted into, using an encoding specific strategy. 

Special case: First granule 
This makes the “first” granule created as well as the “first” granule in the index slightly special as 
they always need to represent the lowest possible values as their lower bound as the lowest row 
may be higher than rows inserted into it. If this wasn’t the case then the only alternative would 
be to create a new Granule and insert it, likely causing an unpredictable write amplification on 
the index as it would depend on the order of items inserted. 



 
While logically new rows are inserted in their correct place, in reality only the low and high 
points of a granule are respected and within the granule there are multiple parts of sorted data 
that are merged in order at read time. Another advantage of this strategy is, it will make 
implementing isolation of commits/transactions trivial as new/incomplete commits are simply left 
out of queries when merging. Asynchronously, parts are merged even without queries being 
executed, alleviating most of the previous extra memory cost and CPU cost at query time. When 
total sorting is necessary for a query, then merging is done using a direct k-way merge using a 
min-heap. 
 
When querying only whole granules are read, the query engine is responsible for filtering out 
results further. 
 
For performance and compression benefits it makes sense to use custom Go code for the 
in-memory representation of this data. At query time, however, it is converted to Apache Arrow 
for processing of queries by the query engine, that way the query engine can be built generically 
on top of the Arrow format. For a start, the storage may return all data of a Granule, even data 
that may not match the requested matchers, the query engine needs to ensure additionally that 
all data matches queried constraints. 

https://en.wikipedia.org/wiki/K-way_merge_algorithm#Direct_k-way_merge
https://en.wikipedia.org/wiki/Binary_heap
https://arrow.apache.org/


 
Persistence of this in-memory store will be covered in a future RFC. 

Atomicity 
A problem all databases face is allowing reads and writes to happen concurrently in a safe way. 
There are various levels of isolation. This section describes how it is implemented in this column 
store. If you are familiar with strategies for isolation, the scheme proposed here is 
multi-version-optimistic-concurrency-control (MVOCC) optimized for the insert-only nature of the 
store. 
 
Each database of the columnstore maintains a list of active transactions each of which are 
assigned a unique, atomically incrementing ID. Granule parts inserted during a transaction are 
marked with their transaction ID, a transaction that performs writes obtains two transaction IDs, 
one when it starts to write and one when it is done inserting, this allows other transactions to 
inspect whether to include writes from transactions that may not be completed yet. It also 
means read-transactions will ignore partial writes of a write transaction whose transaction ID is 
larger than the read transaction ID, making a check for whether the write transaction has 
finished not necessary. For the same reason, the database maintains a version of the sparse 
granule index for each transaction that modified it. 
 
Splitting and compaction are distinct actions on a granule, compaction can occur even without 
splitting, and it would never affect the granule index since lower and upper bounds would not 
change, it would merely be about optimizing the layout of existing data. Splitting both compacts 
and splits a granule. Nevertheless, compaction and splitting actions are conceptually the same. 
A compaction is a splitting action with a split factor of 1, meaning out of 1 granule 1 granule is 
created, with the difference being since no net new granule is created, the index does not 
require any inserts. 
 
Splitting granules does present an additional challenge in regards to concurrent reading and 
writing of the granule. Since Granule parts that are actively inserted respect only the lower and 
upper bounds of the sorted data, when the upper bound changes (which is exactly what 
happens during splitting of granules), then the Granule parts inserted potentially concurrently, 
are no longer correctly inserted. For this reason the compaction that happens during splitting 
can only occur on granule parts lower than the splitting’s transaction ID. 
 
Since splitting does not delete or modify existing or add new data, but only optimizes the 
representation of existing data, it would be ideal if splitting did not block reading or writing of 
data. In order to achieve this, while compacting a granule, that granule maintains a list of the 
granule parts inserted concurrently and if the granule is being read, it uses the list of parts from 
before compaction was started, concatenated with the list of parts inserted during compaction. 
 
Granule parts inserted concurrently are added to all splitted parts and until their next 
compaction are filtered by their (new) Granule’s lower and upper bound. That way, even if parts 



technically contain data outside of the bounds of the granule they are not returned when 
iterating over them. 
 
Another transaction ID is obtained to update the sparse granule index with the new granule(s), 
which is also used to finalize the list of concurrently inserted parts duplicated to the splitted 
granules. 
 
TODO: How do transactional inserts/updates to the sparse index work? => tl;dr Granule index 
entries have their transaction ID attached to them. 

Further readings 
●​ An Empirical Evaluation of In-Memory Multi-Version Concurrency Control 
●​ Building a Bw-Tree Takes More Than Just Buzz Words 
●​ Apache Arrow vs. Parquet and ORC: Do we really need a third Apache project for 

columnar data representation? 
○​ Paper referenced: Integrating Compression and Execution in Column-Oriented 

Database Systems 
○​ Some comments to Daniel Abadi's blog about Apache Arrow 

Alternatives 

Isolation 
All transactions blocking each other, allowing all insertions, splitting and compactions to have no 
need for locking. 

Insertion strategy 
Insertions into a granule needs to be in order, therefore at insertion time when composite 
ordered columns are used the index is determined using the union of valid index ranges. 
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http://dbmsmusings.blogspot.com/2017/10/apache-arrow-vs-parquet-and-orc-do-we.html
http://www.cs.umd.edu/~abadi/papers/abadisigmod06.pdf
http://www.cs.umd.edu/~abadi/papers/abadisigmod06.pdf
https://wesmckinney.com/blog/arrow-columnar-abadi/


 

Storage mechanisms 
●​ Note: Some of the previously tried and tested storage mechanisms are laid out on a very 

high level in the abstract and problem statement of this RFC. Over 1.5 years of trying 
and working on storage mechanisms to solve this problem have led to this point. 

●​ We could use off the shelf columnar databases such as Clickhouse. 
○​ This approach would require an external dependency which we would like to 

avoid at all costs for the Parca project. Parca is and should always be a single 
statically linked binary for ease of use. 

●​ We could use another embeddable columnar store Go library such as 
https://github.com/kelindar/column  

○​ kelindar/column was really the only embeddable column store written in Go that 
we could find and it didn’t support the features and flexibility we were looking for. 

■​ It specifically optimizes for queries, while for Parca the overwhelming 
majority of interactions with the database are hot-inserts so Parca needs 
to optimize towards that case. 

■​ It does not support dynamic dictionary/map types, which is essential to 
the Parca query model utilizing label-sets. 

https://github.com/kelindar/column
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