[Parca-RFC-001] Column Store for Profiling Data

Authored: 2021-11-02
Author: Matthias Loibl , Thor Hansen , Frederic Branczyk

Abstract

The Parca project wants to offer a built-in storage that is well suited for storing and querying
profiling data on any dimension and can handle short-lived serverless or Cl environments just
as well as long-running applications. This RFC covers only the portion of the database that
actively accepts writes, and everything detailed here is entirely in-memory. An RFC for
persistent storage will follow.

Problem

The Parca server (and before it the Conprof project) has gone through various iterations of
storage strategies including:

e Prometheus time-series style series recording full application profiles for each timestamp
o In raw bytes and later compressed via zstd
e Store pre-calculated trees of profiling data to make generating iciclegraphs/flamegraphs
simple and fast
o The complexity of diffing, merging and storing trees were deemed
unmaintainable
e Time-series of stack-traces grouped by workload labels to prevent each stack trace
being in the index

All of these approaches failed to provide the flexibility for querying that we envision for the Parca
project (separate RFC to follow).

The current storage architecture resembles a time-series database a lot. The way that this
manifests itself the most is in trying to accumulate chunks of data to be compressed together as
a series of values. The downside of doing this is that we have a worst case active chunks/series
of

Processes x Pprof labels x Unique Stack Traces
It is difficult to tell whether this ends up being a problem in reality because the number of

stack-traces are realistically bound, but it is equivalent to the Prometheus anti-pattern of putting
IDs into label-values.

mailto:matthias.loibl@polarsignals.com
mailto:thor.hansen@polarsignals.com
mailto:frederic.branczyk@polarsignals.com

Proposal

A columnar database layout of the data could alleviate the cardinality issues, by not maintaining
data by series at all, but rather batching many “rows” to then be written at once to persistent
storage. A columnar database at first resembles a traditional relational database a lot, but
contrary to it, as the name says, a columnar database stores the data by columns as opposed
to by rows. This allows columnar databases to be excellent for data intensive operations.

High-level In-memory Layout

A potential columnar table layout for Parca’s profiling data could be:

Column
Name

Type

Dyna
mic

Encoding

Description

Labels

String

Yes

Dictionary +
RLE

Workload labels are those that uniquely
identify the process that produced a profile.
Workload labels are string columns that are
dynamically created, meaning whenever a new
key is seen, a new column is created to track it.
Using this method has two advantages, arbitrary
cardinality has the same cost as constant
cardinality, and labels are tracked as part of the
table directly, circumventing the need for an
external inverted index. Each of the
sub-columns is encoded using Dictionary
encoding, which deduplicates the strings while
retaining Arrow’s O(1) access guarantee.

Stacktrace

[JUUID

No

Dictionary +
RLE

Stacktrace is an array of UUIDs that each
reference a Location ID in the Metastore.

Pprof
string
labels

String

Yes

Dictionary +
RLE

Pprof string labels are the string labels
attached to a pprof sample. Similar to workload
labels they are string columns created
dynamically as they are seen for the first time
and encoded using Dictionary encoding.

Pprof num
labels

Int64

Yes

RLE

Pprof num labels are the integer labels
attached to a pprof sample. Because num labels
potentially have a unit attached to them, their
column name is composed of label-name
concatenated with the unit. Similar to workload
and pprof string labels, pprof num labels are
columns that are dynamically added, but
contrary to the others they are of type int64.

Timestam
p

uint64

No

Plain

Timestamp is the timestamp at which the
profile as a whole was captured that this
particular stack trace was a part of. Timestamps
are plainly encoded. Future work might optimize
the encoding by using double delta encoding,
similar to the strategy of the gorilla encoding,
since timestamps are already proposed to be
stored in ascending order (see below), meaning
when a new profile is inserted where all
samples have the same timestamp they are
likely to be inserted at different places of the
table, so data wise timestamps are not going to
be repeated but rather increasing in their layout.
Similar to Prometheus, Parca and or Parca
Agent would need to ensure to remove tiny
amounts of jitter to increase the compression
efficiency.

SampleTy
pe

String

No

RLE

SampleType represents the type of the value,
eg. “cpu” or “allocations”.

SampleUn
it

String

No

RLE

SampleUnit represents the unit of the value,
eg. “nanoseconds” or “bytes”.

PeriodTyp
e

String

No

RLE

PeriodType represents the type of events
between sampled occurrences. e.g "cpu" or
llheap”-

PeriodUnit

String

No

RLE

PeriodUnit represents the unit of events
between sampled occurrences. e.g "cycles" or
"bytes”.

Duration

int64

No

RLE

Duration represents the duration over which the
profile was taken.

Period

int64

No

RLE

Period the number of events between sampled
occurrences.

TracelD

String

No

Plain

TracelD, in order to correlate tracing data
directly with profiling data.

Value

intc4

No

Plain

Value is the observed occurrences of the stack
trace (talking about an example of a CPU
profile). More generally it is the value attached
to the stack trace.

https://www.vldb.org/pvldb/vol8/p1816-teller.pdf

All columns except duration, period and value make up the primary key, like we know from
relational databases. When inserted all data is immediately sorted by the primary key in order
of:

SampleType
SampleUnit
PeriodType
PeriodUnit
Workload labels
Stacktrace
Timestamp

Pprof string labels
Pprof num labels

This sorting is just a proposal where the theory is that retrieving data for merging, single selects
as well as stack trace searches are balanced. It is unclear what sorting is most optimal,
therefore the implementation should be flexible enough to modify this afterwards. Another
possibility for performance optimization could be to store the data in multiple layouts.

See example input data, their logical and physical representation in the accompanying table.

Columnar Storage Design

Everything in the design relies on writes to the column store to be in the order declared by the
schema. With this property, an insert requires at most a single pass over the sparse index,
which is held in memory.

Writes are buffered in small chunks and regularly compacted into larger chunks, these chunks
have a lower and upper bound of the sorted column values, these are called granules going
forward in this design. Essentially an LSM-tree. For a start a simple B-Tree can be used such as
the Go btree implementation by Google, building a sparse index similar to that of ClickHouse. If
the performance of this btree implementation ends up being prohibitive, a Bw-Tree might be a
good fit as it is designed with modern hardware in mind.

https://docs.google.com/spreadsheets/d/1w9ocaKk8jYygkNDgzC0d4GaKWX4uw_FX_dE4W6n1EAw/edit?usp=sharing
https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://pkg.go.dev/github.com/google/btree
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/mergetree/#primary-keys-and-indexes-in-queries
https://15721.courses.cs.cmu.edu/spring2017/papers/08-oltpindexes2/bwtree-icde2013.pdf

Table
Order Columns Value/Measurement
Columns
1 123
2 234
Sparse Index 3 345
1 4

5 s

10

Granule
(Max Size: 4)

14

1
12
13
14

15

The start of each granule is part of the index. From blank, the storage starts with a single
granule, and every time a granule grows over the specified rows or byte size it is split into two.
Thus adding 1 more entry to the index (as the initial granule already had one). In the in-memory
representation, each granule has X rows, which depending on the encoding of the column is
inserted into, using an encoding specific strategy.

Special case: First granule

This makes the “first” granule created as well as the “first” granule in the index slightly special as
they always need to represent the lowest possible values as their lower bound as the lowest row
may be higher than rows inserted into it. If this wasn’t the case then the only alternative would
be to create a new Granule and insert it, likely causing an unpredictable write amplification on
the index as it would depend on the order of items inserted.

Insert into table at Ordered Columns 6 Table

because the granule was full with 4 Columns

rows being the max at 5-7 and 8-9 and
the new Granule starting at 8 inserted
into the sparse index 1 123

2 234
Sparse Index 3 345
1 4
5 s
]

8

10 7

14 8

10
1
12
13
14

15

While logically new rows are inserted in their correct place, in reality only the low and high
points of a granule are respected and within the granule there are multiple parts of sorted data
that are merged in order at read time. Another advantage of this strategy is, it will make
implementing isolation of commits/transactions trivial as new/incomplete commits are simply left
out of queries when merging. Asynchronously, parts are merged even without queries being
executed, alleviating most of the previous extra memory cost and CPU cost at query time. When
total sorting is necessary for a query, then merging is done using a direct k-way merge using a

min-heap.

When querying only whole granules are read, the query engine is responsible for filtering out
results further.

For performance and compression benefits it makes sense to use custom Go code for the
in-memory representation of this data. At query time, however, it is converted to Apache Arrow
for processing of queries by the query engine, that way the query engine can be built generically
on top of the Arrow format. For a start, the storage may return all data of a Granule, even data
that may not match the requested matchers, the query engine needs to ensure additionally that
all data matches queried constraints.

https://en.wikipedia.org/wiki/K-way_merge_algorithm#Direct_k-way_merge
https://en.wikipedia.org/wiki/Binary_heap
https://arrow.apache.org/

Persistence of this in-memory store will be covered in a future RFC.

Atomicity

A problem all databases face is allowing reads and writes to happen concurrently in a safe way.
There are various levels of isolation. This section describes how it is implemented in this column
store. If you are familiar with strategies for isolation, the scheme proposed here is
multi-version-optimistic-concurrency-control (MVOCC) optimized for the insert-only nature of the
store.

Each database of the columnstore maintains a list of active transactions each of which are
assigned a unique, atomically incrementing ID. Granule parts inserted during a transaction are
marked with their transaction ID, a transaction that performs writes obtains two transaction IDs,
one when it starts to write and one when it is done inserting, this allows other transactions to
inspect whether to include writes from transactions that may not be completed yet. It also
means read-transactions will ignore partial writes of a write transaction whose transaction ID is
larger than the read transaction ID, making a check for whether the write transaction has
finished not necessary. For the same reason, the database maintains a version of the sparse
granule index for each transaction that modified it.

Splitting and compaction are distinct actions on a granule, compaction can occur even without
splitting, and it would never affect the granule index since lower and upper bounds would not
change, it would merely be about optimizing the layout of existing data. Splitting both compacts
and splits a granule. Nevertheless, compaction and splitting actions are conceptually the same.
A compaction is a splitting action with a split factor of 1, meaning out of 1 granule 1 granule is
created, with the difference being since no net new granule is created, the index does not
require any inserts.

Splitting granules does present an additional challenge in regards to concurrent reading and
writing of the granule. Since Granule parts that are actively inserted respect only the lower and
upper bounds of the sorted data, when the upper bound changes (which is exactly what
happens during splitting of granules), then the Granule parts inserted potentially concurrently,
are no longer correctly inserted. For this reason the compaction that happens during splitting
can only occur on granule parts lower than the splitting’s transaction ID.

Since splitting does not delete or modify existing or add new data, but only optimizes the
representation of existing data, it would be ideal if splitting did not block reading or writing of
data. In order to achieve this, while compacting a granule, that granule maintains a list of the
granule parts inserted concurrently and if the granule is being read, it uses the list of parts from
before compaction was started, concatenated with the list of parts inserted during compaction.

Granule parts inserted concurrently are added to all splitted parts and until their next
compaction are filtered by their (new) Granule’s lower and upper bound. That way, even if parts

technically contain data outside of the bounds of the granule they are not returned when
iterating over them.

Another transaction ID is obtained to update the sparse granule index with the new granule(s),
which is also used to finalize the list of concurrently inserted parts duplicated to the splitted
granules.

TODO: How do transactional inserts/updates to the sparse index work? => tl;dr Granule index
entries have their transaction ID attached to them.

Further readings

An Empirical Evaluation of In-Memory Multi-Version Concurrency Control
Building a Bw-Tree Takes More Than Just Buzz Words

Apache Arrow vs. Parquet and ORC: Do we really need a third Apache project for
columnar data representation?

o Paper referenced: Integratin mpression and Execution in Column-Orient
Database Systems
o m mmen Daniel A i's bl Apache Arrow
Alternatives

Isolation

All transactions blocking each other, allowing all insertions, splitting and compactions to have no
need for locking.

Insertion strategy

Insertions into a granule needs to be in order, therefore at insertion time when composite
ordered columns are used the index is determined using the union of valid index ranges.

https://www.vldb.org/pvldb/vol10/p781-Wu.pdf
https://db.cs.cmu.edu/papers/2018/mod342-wangA.pdf
http://dbmsmusings.blogspot.com/2017/10/apache-arrow-vs-parquet-and-orc-do-we.html
http://dbmsmusings.blogspot.com/2017/10/apache-arrow-vs-parquet-and-orc-do-we.html
http://www.cs.umd.edu/~abadi/papers/abadisigmod06.pdf
http://www.cs.umd.edu/~abadi/papers/abadisigmod06.pdf
https://wesmckinney.com/blog/arrow-columnar-abadi/

Insert
{namespace="my-namespace-1", pod="my-app-1", container="my-app-test-2"}
Value: 10

Insertion range of namespace is: [0, 3]
Insertion range of pod is (under constraint of namespace): [0, 2]
Insertion range of container is (under constraint of other columns): [1,1]

Therefore the index to insert the new data atis 1.

labels.namespace | labels.pod | labels.container value
my-namespace 1 my-app-1 my-app-test-1 7
my-namespace 1 my-app-1 my-app-test-3 2
my-namespace1 my-app-3 my-app-test-3 6
my-namespace2 my-app-1 my-app-test-1 3

Storage mechanisms

e Note: Some of the previously tried and tested storage mechanisms are laid out on a very
high level in the abstract and problem statement of this RFC. Over 1.5 years of trying
and working on storage mechanisms to solve this problem have led to this point.

e We could use off the shelf columnar databases such as Clickhouse.

o This approach would require an external dependency which we would like to
avoid at all costs for the Parca project. Parca is and should always be a single
statically linked binary for ease of use.

e We could use another embeddable columnar store Go library such as
https://github.com/kelindar/column

o kelindar/column was really the only embeddable column store written in Go that
we could find and it didn’t support the features and flexibility we were looking for.

m It specifically optimizes for queries, while for Parca the overwhelming
maijority of interactions with the database are hot-inserts so Parca needs
to optimize towards that case.

m It does not support dynamic dictionary/map types, which is essential to
the Parca query model utilizing label-sets.

https://github.com/kelindar/column

	[Parca-RFC-001] Column Store for Profiling Data
	Abstract
	Problem
	Proposal
	High-level In-memory Layout
	Columnar Storage Design
	Special case: First granule

	Atomicity

	Further readings
	Alternatives
	Isolation
	Insertion strategy
	Storage mechanisms

