Место для баллов:]	Код:

Третий этап республиканской олимпиады по «Биологии» (2015-2016)

КАБИНЕТ № 2 (33,5 баллов)

БИОХИМИЯ И МИКРОБИОЛОГИЯ

Перед выполнением заданий убедитесь, что на Вашем рабочем столе имеются

Глазные пипетки (15 шт.), пенициллиновые флакончики для реактивов (15 шт.), чашка Петри или одноразовая тарелка для размещения рабочих реактивов и исследуемых растворов (2), Файл (прозрачный пластиковый) или кусок полиэтилена формата с листом белой бумаги, Фильтровальная бумага размером 10х10 см или готовый фильтр.

Если что-то из перечисленного отсутствует, немедленно поднимите руку и позовите дежурного преподавателя!

Задание 1. (*14,5 баллов*). Проанализируйте состав содержимого флаконов A, B и C, используя качественные реакции.

І. Качественная реакция на сахарозу.

К 3-м каплям p-pa сахарозы добавляют 1 каплю 10% p-pa NaOH и 1 каплю 2% p-pa Co(NO₃)₂. Появляется фиолетовое окрашивание.

II. Качественная реакция на крахмал.

К 3-м каплям p-pa крахмала добавляют 1 каплю реактива Люголя. Появляется темно-синее окрашивание.

III. Качественная реакция на глицерин.

K 3-м каплям раствора глицерина добавляют 2 капли 10% p-ра NaOH и 2 капли 1~% p-ра $CuSO_4$. Оставляют на 15~ мин для развития окраски. Развивается слабо синее окрашивание вследствие образования глицерата меди.

IV. Качественная реакция на витамин С.

K 3-м каплям 1% p-ра аскорбиновой кислоты добавляют 1 каплю 5% p-ра $K_3[Fe(CN)_6]$ и 1 каплю 1% p-ра $FeCl_3$. Оставляют на 5 минут для развития окраски. Жидкость приобретает зеленовато-синюю окраску и выпадает осадок берлинской лазури.

Анализ проводите на полиэтиленовых пластинках, помещенных на лист белой бумаги. (Соответствующее количество капель наносите прямо на пластинку).

Работайте аккуратно!

1.1. (_3_баллов, по 0,5 за по	зицию). Результаты а	анализа:				
Раствор А: 1) проба на крахмал	положительная	отрицательная				
(здесь и далее верный ответ обведите кружком						
2) проба на сахарозу	положительная	отрицательная				
3) проба на глицерин	положительная _	отрицательная				
4) проба на витамин С	положительная	отрицательная				
Раствор В: 1) проба на крахмал	положительная	отрицательная				
2) проба на сахарозу	положительная	отрицательная				
3) проба на глицерин	положительная	отрицательная				
4) проба на витамин С	положительная	отрицательная				
Раствор С: 1) проба на крахмал	положительная	отрицательная				
2) проба на сахарозу	положительная	отрицательная				
3) проба на глицерин	положительная	отрицательная				
4) проба на витамин С	положительная	отрицательная				
1.2. (_3 <i>баллов</i>). Определ		, , , , , , , , , , , , , , , , , , ,				
растворах А, В и С, ответы вне						
	есите в таблицу.					
растворах А, В и С, ответы вне	есите в таблицу.					
растворах A, B и C, ответы вне Раствор A	есите в таблицу.					
растворах A , B и C , ответы вне Раствор A Раствор В	вещество (веп					

Б. Компонентом какой группы органических соединений, входящих состав биологических мембран, является глицерин?	В
глицерофосфолипидов	
В. Изобразите структурную формулу глицерина?	
Н2СОН-НСОН-Н2ОН	
Г. Какая группа биополимеров при взаимодействии с Cu SO ₄ в щелочно среде дает сине-фиолетовое окрашивание?	й
белки, протеины, пептиды	
<u>Группа 2.</u> (_4_баллов).	
А. Из каких моносахаридов состоят сахароза:	
глюкоза, фркутоза	
Б. Какой из моносахаридов, входящих в состав сахарозы, подвергается превращениям в процессе гликолиза?	
глюкоза	
В. Перечислите процессы, в результате которых происходит полнокисление глюкозы до ${\rm CO_2}$ и ${\rm H_2O}$? :	oe
гликолиз, окислительное декарбоксилирование ПВК, цикл Кребса, перенос электронов по электрон транспортной уепи митахондрий на кислород.	
Г. Укажите, сколько молекул АТФ образуется непосредственно	n

процессе гликолиза.

<u>Группа 3.</u> (*1 баллов*).

А. К какой группе соединений относится крахмал?

____ гомополисахарид, гомополигликан

Б. Какая группа организмов осуществляет синтез крахмала и в каких структурах клетки он накапливается?

__ автофототрофы, в цитоплазме _____

<u>Группа 4.</u> (_1,5__*баллов*).

А. К какому классу соединений относится аскорбиновая кислота?

____ органические кислоты _____

Б. Изобразите структурную формулу витамина С.

В. Назовите заболевание, которое развивается при недостатке в организме витамина С.

___ цинга

Задание 3_(_4__баллов).

Метод определения общих липидов в сыворотке крови основан на том, что продукты распада ненасыщенных липидов образуют с реактивом, состоящим из серной, ортофосфорной кислот и ванилина, соединение красного цвета, интенсивность окраски которого пропорциональна содержанию общих липидов.

Расчет содержания общих липидов (X) в г/л в крови производят по формуле:

$$X = \frac{A_{np} \cdot C}{A_{cm}},$$

где $A_{\rm np}$ — экстинкция, полученная после измерения интенсивности окраски опытной пробы на фотоэлектроколориметре;

 $A_{\rm cr}$ — экстинкция, полученная после измерения интенсивности окраски стандартной пробы на фотоэлектроколориметре;

C – содержание липидов (олеата натрия) в стандартном растворе в (г/л).

Нормальные величины содержания общих липидов в сыворотке крови здоровых людей составляют 4-8 г/л.

Определите содержание липидов в сыворотке крови человека, если $A_{\rm np} = 0,180;$ $A_{\rm cr} = 0,124;$ C - 8 г/л. Расчет запишите.

Сравните полученный результат с показателями нормы, запишите ответ. Рассчитайте, на сколько процентов по отношению к нижней и верхней границам нормы, изменен данный показатель у больного? (Расчет запишите). Подумайте и ответьте, по отношению к какому показателю нормы (нижней предел или верхний предел), верно рассчитывать процент изменения показателя у больного?

Ответ: $X = \frac{0,180 \times 8/0,124}{1,6} = \frac{11,6}{5} = \frac{7}{1,0}$, это выше границ нормы.

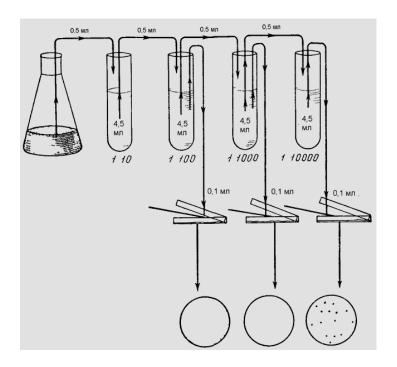
Показатель в процентах по отношению к нижней границе нормы 11,6x100/4=290 %. Выше нижней границы нормы на 190 %.

Показатель в процентах по отношению к верхней границе нормы 11,6x100/8=145 %. Выше верхней границы нормы на 45 %.

по отношению к какому показателю нормы, верно рассчитывать процент изменения показателя у больного Если показатель выше нормы, верно рассчитывать по отношению к верхнему пределу нормы. Если показатель ниже нормы, верно рассчитывать по отношению к нижнему пределу нормы.

Задание 4 (10 баллов). Определите, к какому виду относится исследуемая бактериальная культура, на основании результатов предложенных тестов и таблицы.

Внимательно читайте и анализируйте технику и результаты каждого теста!


- **А)** Определение грампринадлежности (тест Грегерсена). Твердую культуру исследуемых бактерий бактериологической петлей внесли в каплю 3 %-ного водного раствора КОН на предметном стекле и в течение 1 мин тщательно перемешивали. Результат: после воздействия раствора щелочи на клетки, взвесь ослизняется и за петлей тянутся тонкие слизистые нити.
- **Б**) **Форма** клеток. После окрашивания фиксированного мазка бактериальной культуры простым методом с использованием водного раствора фуксина препарат исследовали под микроскопом. **Результат:** в поле зрения по одиночно располагаются мелкие красного цвета клетки вытянутой формы.
- **В**) *Подвижность*. Исследуемую культуру засеяли уколом в столбик 0,3 %-ной полноценной агаризованной питательной среды в пробирке и инкубировали в течение 48 ч. **Результат:** наблюдается равномерное диффузное помутнение среды во всем объеме, место укола практически не различимо.
- Г) Окислительное (ферментативное) сбраживание углеводов (О/F тест, или окислительно-бродильная проба). Для определения типа ферментации глюкозы использовали полужидкую агаризованную среду Лейфзона, содержащую неорганические соли, источник азота, глюкозу и индикатор. При нейтральных значениях рН данная среда окрашена в зеленый цвет; при подкислении, обусловленном процессами ферментации глюкозы, становится желтой.
- В две пробирки со средой Лейфзона с помощью бактериологической петли уколом внесли исследуемую культуру. Затем на поверхность столбика агаризованной среды в одной из пробирок для создания анаэробных условий наслоили стерильное вазелиновое масло («анаэробная пробирка»). Другая пробирка осталась в неизменном виде («аэробная пробирка»). Пробирки инкубировали в течение 48–72 ч. **Результат:** среда изменила цвет с зеленого на желтый в обеих пробирках.
- Д) **Выявление** каталазы. Стерильной бактериологической петлей исследуемую твердую бактериальную культуру внесли в каплю 3 %-ного раствора перекиси водорода на предметном стекле и тщательно перемешали. **Результат:** наблюдается активное выделение пузырьков газа.
- **Е**) *Выявление оксидазы*. Исследуемую твердую бактериальную культуру каплю 1 %-ного раствора дигидрохлорида тетраметил-*n*-фенилендиамина предметном стекле тщательно И на Результат: развитие перемешали. течение 1 характерной МИН розово-красной окраски суспензии зарегистрировано не было.
- **Ж**) *Протеолитическая активность*. Исследуемую твердую бактериальную культуру засевали медальоном на поверхность агаризованной среды, содержащей обезжиренное молоко, в чашке Петри и инкубировали в течение 72 ч. **Результат:** вокруг медальона формируется оптически прозрачная зона.
- **3)** *Амилолитическая активность*. Исследуемую твердую бактериальную культуру засевали медальоном на поверхность полноценной питательной среды, содержащей 0,2 % растворимого крахмала, в чашке Петри. Через 72 ч инкубирования на поверхность данной среды нанесли раствор Люголя.

Результат: поверхность питательной среды вокруг медальона окрашивается в сине-фиолетовый цвет.

Вид бактерий	Гра мп рин адл ежн ост ь	Фо рм а кл ето к	П од ви ж но ст ь	О/ F те ст	О бр аз ов ан ие ок си да зы	О бр аз ов ан ие ка та ла	О бр аз ов ан ие пр от еа	О бр аз ов ан ие ам ил аз
Escherichia coli	-	П	+	F	-	+	+	-
Xanthomonas campestris	-	П	+	O	-	+	+	-
Pantoea agglomerans	-	П	+	F	-	+	-	-
Clavibacter michiganensis	+	П	-	О	-	+	-	-
Staphylococcus saprophyticus	+	К	-	F	-	+	_	-
Pseudomonas putida	-	П	+	О	+	+	+	-
Sarcina lutea	+	К	1	F	ı	+	+	-
Agrobacterium tumefaciens	-	П	+	О	+	+	_	-
Pseudomonas fluorescens	-	П	+	О	+	+	+	-
Bacillus subtilis	+	П	+	F	-	+	+	+
Streptococcus lactis	+	К	-	F	-	-	+	+

Ответ: Escherichia coli

Задание 5 (5 баллов). Определите титр клеток в исходной бактериальной суспензии, разведения которой осуществляли в соответствии со схемой.

Высев бактериальной суспензии на агаризованные питательные среды в чашках Петри производили из двух последних пробирок, содержащих 10-3 и 10^{-4} клеток, соответственно. Причем высев из каждого разведения осуществляли параллельно на две чашки Петри. После 24 ч инкубирования в условиях производили подсчет выросших оптимальных числа агаризованных средах колоний, исходя из того, что каждая из них потомство одной клетки.

Определите количество клеток в 1 мл исходной бактериальной культуры, если при высеве из 3-ей пробирки на средах сформировались 301 и 279 колоний, а при высеве из 4-ой пробирки – 26 и 32.

Ответ: 2,9 x 10⁶