
GSoC 2019: Recording Similarity Index with Annoy for 
AcousticBrainz 
 
Personal Information 
·      Name: Aidan Lawford-Wickham 
·      MusicBrainz, JIRA ticket system, MetaBrainz discourse: aidanlw17 
·      IRC nick: aidanlw17 
·      Email: a.lawfordwickham@mail.utoronto.ca 
·      Github: https://github.com/aidanlw17 
·      Website & Blog: https://www.noodlab.com 
·      Twitter: https://twitter.com/AidanLW 
·      Time Zone: UTC -4 
 
Table of Contents 
Overview of the Opportunity ……………….……………….……………….………………..……………… 2 
High Level Objectives ……………………….……………….……………….………………..……………… 2 
Detailed Implementation …………………….……………….……………….……………….……………… 3 
​ Annoy Proof of Concept …………………………….……………….……………….……………..  3​  
​ ​ Understanding Annoy Algorithm …………………………………...………………………. 3 
​ ​ Replicating Tovstogan’s System …………………………………...………………………. 5 
​ ​ Creating Proof of Concept ………………………..………………..……………………….. 5 
​ Annoy Testing and Experimentation ………………………………………………...……………. 6 
​ ​ Querying Annoy & PostgreSQL …………………..………………..………………………. 6 

ANN Benchmark Comparisons …………………………………………………………….. 9 
Reporting and Documentation …………………….………………...……………………... 9 

Similarity Index System ………………………………………………..……………..…………….. 10​ 
​ ​ Index and Update Workflow ………………………………………….…………………..... 10 
​ ​ Index Class Model ……………………………………………………..……………………. 12 
​ ​ Index Flask API …………………………………….…………………..……………………. 14 

Unit Tests and Documentation …………………..…………………..…………...……….. 16 
Offline Similarity Matrix……………….……………….……………….……………….…………… 16​
​ ​ Storage Method and Format ………………………………………...……………. 17 

​ ​ ​ Testing Storage Methods ………………………….………………….…………… 20 
​ ​ ​ Update Mechanism ………………………………..………………………………... 20 
​ ​ ​ Unit Tests and Documentation ……………………………………….…………... 20 
Timeline ……………………………………………………………………….…………………..……………. 20 
​ High-Level ………...……………………………………………………………………..……………. 20 
​ Week-by-Week ……………………………………………………...…………………..……………. 23 
References ……………………………………………………………………………………….…………….. 23 
Detailed Information about Myself ………………...…………………………………………………….... 24 
 

https://github.com/aidanlw17
https://www.noodlab.com
https://twitter.com/AidanLW


Overview of the Opportunity 
  
The AcousticBrainz database contains detailed high and low-level information for millions of 
audio recordings, all of which create an essential for creatives, researchers, and music fanatics 
alike. Our understanding of audio can be greatly improved through features that focus on 
similarities between the content of recordings in such a large database. As such, the 
development of a similarity index between recordings is essential to improving the 
AcousticBrainz platform and also to the progression of music recommendation engines in 
related projects like ListenBrainz. 
  
Identifying similarity between recordings is a complex and rewarding project, which has been 
the subject of many research papers and projects throughout the music industry in recent years. 
Especially in relation to AcousticBrainz, previous investigations on similarity systems like that of 
Philip Tovstogan [1], have supported the success of content-based (high and low level data) 
engines for determining track similarity. These implementations have fallen short since their 
architecture prevents scalability, ultimately lacking the speed required for use in AcousticBrainz. 
  
With the information gained from previous pitfalls in recording similarity research and the 
importance of improved efficiency for a long term implementation, my 2019 GSoC project will 
primarily aim to lay the foundation for an AcousticBrainz similarity engine. The following high 
level objectives will form a basis for the investigation, ultimately leading to a fast, scalable, and 
easily updatable system for content-based similarity data on all recordings in the AcousticBrainz 
database. 
  

High Level Objectives 
   
1. Implement a proof of concept for similarity calculation using the Annoy algorithm. 
  
2. Undergo a series of experiments and benchmarks to determine the validity of the Annoy 
solution in comparison to other algorithms and the previous implementation [2]. 
 
3. Use the proof of concept to build a scalable similarity index for AcousticBrainz.  
 
4. Develop a mechanism to update the index when new recordings are added to 
AcousticBrainz. 
 
5. Create an API for users and other projects to interact with the similarity index. 
 
6. Use the index to make an offline matrix of similarity for use in other projects. 
 
7. Develop a mechanism to update the offline matrix at a given time interval, when recordings 
have been added to the database. 

https://zenodo.org/record/1479769#.XKbXEutKgp9
https://zenodo.org/record/1479769#.XKbXEutKgp9


Detailed Implementation 
  

Annoy Proof of Concept 
  
Overview: 
  
Using the database alterations and calculations for vectorized metrics from Tovstogan’s 
previous approach [2], we will use the Annoy nearest neighbours software to achieve the same 
similarity results as Tovstogan’s PostgreSQL system. This will verify that Annoy can also 
accurately provide similarity calculations. 
  
Rationale: 
  
The Annoy nearest neighbours software [3] is expected to be significantly faster than 
Tovstogan’s previous implementation with PostgreSQL. Annoy should improve upon our past 
issues with this task because it is optimized for memory usage and it uses static files as 
indexes, distributable between CPU’s without ever being rebuilt. This has been largely beneficial 
for creating the recommendation engine at Spotify, with which our task shares concerns like 
working with millions of recordings simultaneously. In order to explore this method of 
determining similarity, we will need to validate that it is able to perform distance calculations 
between our recordings correctly. We can use Tovstogan’s metrics for producing vector ratings 
from the high and low-level data of each recording, then apply the Annoy algorithm and 
compare the similarity results to those of his PostgreSQL Cube extension solution. 
  
Details: 
  
In order to implement the Annoy proof of concept, we will need to take the following steps: 
  
1. Gain an understanding of the algorithmic concepts behind Annoy and its Python API. 
  
The first step in implementing a proof of concept is to gain an understanding of the software at a 
deeper level. Erik Bernhardsson’s blog post [4] on the nearest neighbours algorithm driving 
Annoy provides an appropriate explanation. In summary: 
  
·  ​ Annoy’s speed depends on dimensionality reduction to create compact representations of 

otherwise very large vector spaces. This is beneficial for use in the large AcousticBrainz 
database of recordings. 

·  ​ Annoy recursively forms a binary tree by randomly selecting two items, and splitting the 
dataset at an equidistant point between them, then repeating on the two nodes formed until 
there are at most K elements in each node. 

https://github.com/spotify/annoy
https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html


 

 
 

Fig.1: Recursive splits between items that form the binary tree. 
  

 
 
Fig.2: Binary tree formed by the respective splits. 
  
·  ​ Notably, each node on the last level of the tree contains a section with at most K items that 

are near to one another, which can be queried in O(logn) since only depth is traversed. 
·  ​ With the use of a priority queue to perform these random splits with a forest of multiple trees, 

accuracy of the nearest neighbours is improved. 
·  ​ The union of nearest neighbours from each tree is sorted, and the K nearest neighbours to 

an item (or recording) are returned. 
  
 
 
 



The Annoy python API will be used for our calculations of similarity. Important things to note 
about working with Annoy: 
  
·      AnnoyIndex(f, metric='angular') will allow us to create an index of dimension f, with 

the specified distance calculation method of “metric”: “angular”, “euclidean”, “manhattan”, 
“hamming”, or “dot”.  

·  ​ We can add items to the set complete with an integer identifier, and an associated vector. 
These vectors will be the vectorized ratings created for each recording in the dataset using 
Tovstogan’s work. 

·  ​ The number of trees used in querying can be predetermined, with more trees improving 
accuracy but decreasing speed. 

·  ​ We can query the index for nearest neighbours by identifier or vector, control the number of 
neighbours returned, and also query for distance between two specific items. 

  
2. Replicating results and understanding the workflow behind Tovstogan’s system 
  
Before building the concept, we must also gain an understanding of Tovstogan’s methods so 
that we may replicate his results in comparison to the Annoy system. 
  
This system calculates metrics for all high and low level data related to a recording, such as 
bpm, key, MFCCs, unary classifiers, moods, instruments, genre models, etc. There are a total of 
12 metrics that provide a vectorized rating for each recording. With the calculation of these 
metrics, this approach utilizes the PostgreSQL Cube extension to index the recordings with a K 
nearest neighbours approach. The changes that must be made to the acoustic-brainz server in 
order to reproduce this implementation are viewable here [5]. 
  
3. Creating the Annoy proof of concept 
  
We will calculate the metrics used in Tovstogan’s approach for each recording in the dataset 
being used, then add the recording to the Annoy index using its Python API. As mentioned 
previously, items can be added to the index using an integer identifier and the associated vector. 
In this case, the calculated metric will be the vector. Notably, the index only allows for identifiers 
to be integers so the identifier used will be the serial id of the lowlevel table for the recording 
MBID, which is already tracked and unique to a recording. If this is not preferred, an alternative 
to track ids for use in the similarity index is to create a reversible hash function which hashes 
the MBID to a unique, positive integer. Once all the recording items are added, the index can be 
built and queried for the nearest neighbours of a particular recording. The following pseudocode 
shows an implementation using each of the metrics in turn, with a similar workflow to 
Tovstogan’s test approach in acousticbrainz-server/similarity/script.py [2]: 
 
 
  

https://github.com/metabrainz/acousticbrainz-server/compare/master...philtgun:master


#Indexing based on one of the 12 metrics​
from annoy import AnnoyIndex​
 ​
mbids = retrieve all mbids for test from database​
 ​
Create AnnoyIndex object​
annoy_index = AnnoyIndex(length of vectors)​
 ​
with db.engine.connect() as connection:​
    #Using Tovstogan's api to retrieve all metrics​
    metric_names = metrics.BASE_METRICS #list of metrics​
    for name in metric_names:​
        metric_cls = metric_names[name]​
        metric = metric_cls(connection)​
        metric.create()​
"""​
get mbids - number of ids batch_size with similar db query to 

_get_recordings_without_similarity() from Tovstogan's api​
"""​
       mbids = _get_recordings_without_similarity(connection, name, 

batch_size)​
                    ​ ​
        for mbid in mbids:​
            #get data for mbid related to metric​
          ​ for row_id, data in metric.get_data_batch(mbids):​
                #get vectorized data for metric for each mbid​
                vector = metric.transform(data)​
                index = retrieve id for mbid​
                                            ​ ​
                #add item to AnnoyIndex​
                annoy_index.add_item(index, vector)​
 ​
"""all items added to AnnoyIndex, time to build the index with a number of 

trees"""​
annoy_index.build(number of trees)​
 ​
# we may save index​
annoy_index.save('similarity_index.ann')​
# we can load later or transfer and load on another CPU​
annoy_index.load('similarity_index.ann')​
 ​
""" retrieve nearest neighbours from index given an id or index. The below 



is simply a sample and we may work with the nearest neighbours in many ways 

for validation. """​
idx = id for recording for which we wish to find nearest neighbours​
#returns 1000 nearest neighbours​
neighbours  = annoy_index.get_nns_by_index(idx, 1000) 

  

Testing and Experimentation using Annoy Proof of Concept 
  
Overview: 
  
Once the proof of concept has been developed, it will undergo a series of tests that look to 
validate the accuracy and efficiency of its similarity calculations between tracks. 
Experimentation will look to deeply understand how the results from Annoy change with different 
subsets of the AcousticBrainz database and different types of queries. It will also consist of a 
comparative investigation between Annoy, the previous PostgreSQL solution, and other nearest 
neighbours algorithms. 
  
Rationale: 
  
Testing the concept is essential to determining empirically and objectively the ways in which 
Annoy can most benefit music similarity systems for AcousticBrainz and related projects. 
Moreover, experimenting with other algorithms on the same dataset and other datasets will 
allow for us to determine whether or not Annoy is truly the best solution for us to work with. If 
need be, we can then progress with an alternative algorithm using a similar workflow. 
  
Details: 
  
1. Varied Queries in Annoy and PostgreSQL 
  
We will perform a series of tests that explicitly compare PostgreSQL and Annoy, in order to 
verify that the use of Annoy is an improvement over the past implementation in terms of speed, 
and also to verify that Annoy calculates at least as accurately as previous works. During these 
tests, we will use random sample sets of recordings from the database. The variables in these 
tests will be the following: 
 
·  ​ Size of datasets being indexed 

o   We will work with a large range of dataset sizes, allowing us to understand the 
limitations of each system. 

o   Dataset sizes (number of recordings): 10 000, 100 000, 500 000, 1 000 000, 
full AcousticBrainz database 



 
·  ​ Number of neighbours calculated 

o   Along with changing the size of the dataset, another factor is the number of 
nearest neighbours for which we query. 

o   Ideally we reach up to 1 000 neighbours, so we will use 100, 500, 1 000, and 2 
000 as an appropriate testing range. 

 
·  ​ Methods of measuring distance in Annoy 

o   The PostgreSQL system utilizes different methods of distance calculation for 
each metric, however Annoy gives simple flexibility in terms of which distance 
measurement we use on an index. Varying the distance measurement can 
change the accuracy of our similarity results, and should also be investigated. 

o   The different methods are mentioned under “Annoy Proof of Concept – Details 
– 1.” 

 
·  ​ Number of trees used in building the index 

o   Increasing the number of trees improves accuracy of the nearest neighbours, 
however it will be detrimental to speed. 

o   We must find an optimal balance for our query needs. We can test 5, 10, 25, 
and 50 tree builds. 

  
For a set of tests, each of the above cases will be considered the independent variable whilst 
time is measured. The time for a query can be measured simply using the time library as 
follows: 
  

import time​
 ​
start_time = time.time()​
 ​
#perform query​
 ​
end_time = time.time()​
 ​
query_time = end_time - start_time 

  
We must also test accuracy and so the nearest neighbours returned for each test case above 
can be compared between the Annoy and PostgreSQL methods. This check can return the 
number of discrepancies in the nearest neighbours array for each query. 
 
 
 
 



It will be valuable to organize the experimental data visually to gain a holistic understanding of 
the results. We can organize the results into a table in the following manner: 
  

Metric K (# nearest 
neighbours) 

Size of 
Dataset 

# 
Discrepancies 
in Neighbours 

Annoy 
Distance 
Method 

# 
Trees 
in 
Annoy 

Time 
Annoy 

Time 
PSQL 

 ... ...           ...  ... 

 … ...           ...  ... 

  
Plots can also be produced easily via matplotlib or other software. The following plots of the 
results will be beneficial: 
  
With data for Annoy and PostgreSQL on the same pair of axes for each metric: 
·  ​ K vs Time 
·  ​ Dataset size vs Time 
·  ​ # Trees in Annoy vs # Discrepancies 
·  ​ Annoy Distance Method vs # Discrepancies 
  
Solely for Annoy for each metric: 
·  ​ # Trees vs Time 
·  ​ Dataset size vs Time 
·  ​ Distance method vs Time 
  
2. Utilizing ANN Benchmark Comparisons 
  
It would also be highly beneficial to understand the results of Annoy in comparison to other 
nearest neighbours algorithms as seen in Erik Bernhardssons benchmark testing [6], which 
provides an empirical evaluation of with a variety of algorithms on numerous datasets. We can 
create a fork of this repository and using the metrics calculations generated in Tovstogan’s past 
work, generate alternative datasets using the metrics associated with each recording. Once we 
format our data to HDF5, we can test Annoy against other nearest neighbours algorithms on our 
dataset to see their differences in performance. The results of this benchmark testing will be the 
recall queries per second tradeoff, in which a higher number per second is preferred. 
  
3. Formatting a Report and Documenting Results 
  
After performing this series of tests, it will be crucial to properly document the methodology used 
and the results of the testing. This way, it can be replicated for improvements and other projects 
in the future, and we can verify the conclusions that we draw. 

https://github.com/erikbern/ann-benchmarks


Similarity Index System with Continuous Update and API 
  
Overview: 
  
After verifying the use of Annoy for recording similarity via a process of experimentation (or 
selecting an alternative nearest neighbours algorithm), the next step is to create a long term 
strategy to implement the index in AcousticBrainz. This system will need to be updated 
continuously as new recordings are added to the database, and it will also require a Flask API 
so that users can query the similarity of recordings using the new index. 
  
Rationale: 
  
An Annoy index implementation in AcousticBrainz allows for other features to be built on 
recording similarity, and allows for AcousticBrainz users to actually access the similarity engine 
capabilities. 
  
Details: 
  
1. Similarity Index and Update Mechanism Workflow 
 
At a high level, the system for creating a similarity index will involve creating multiple Annoy 
Indices, specifically one for each metric in use. When the server begins running, new Annoy 
Index objects will be created and all recordings will be added as items before the indices are 
built and saved. After the first time that this occurs, the indices will be loaded from their saved 
state rather than being rebuilt time and time again. A listener will be implemented on the 
acousticbrainz-server functions that allow for new recordings to be added to the database. 
When these functions are called and new recordings are added, the respective indices will be 
unloaded and removed, and newly created indices that add all items from the database will 
include the new recordings.The order of these operations is not certain, i.e. it may be 
advantageous for us to create new indices, removing the existing indices only once this process 
is finished - allowing indices to be accessible by users at all times. 
  
Note: the process of updating the indices is complicated since the current state of Annoy does 
not allow for new items to be added to an existing index once it is loaded, saved, or built. This 
means that we need to recreate indices with each added recording. Given the size of our 
database this may be slow, and it may be possible to speed this up with some modifications to 
Annoy [7]. This involves adding an unbuild() function to Annoy which would allow items to be 
added to the index after it has been built. This is still limiting in that we are required to rebuild 
each time the server begins running, but with added unbuild functionality we can greatly 
improve the update mechanism as follows: 
 

https://github.com/spotify/annoy/issues/174
https://github.com/spotify/annoy/issues/174


 
Conversely, without unbuild() functionality:

 
 
Ideally, we increase the efficiency of this implementation by adding the unbuild functionality as 
proposed in [7]. 
 
 



2. Similarity Index Class Model 
  
The following file trees show the required files for adding this index functionality: 
  

acousticbrainz-server​
    webserver​
        views​
        ​ api​
        ​     v1​
        ​         __init__.py​
        ​         core.py​
        ​         dataset_eval.py​
        ​         datasets.py​
                    similarity.py​  

  
And 
  

acousticbrainz-server​
    similarity 

        manage.py​
    ​    annoy_model.py​
    ​    metrics.py​
    ​    operations.py 

    ​  
  
The acousticbrainz-server/similarity folder holds the implementation of the Annoy Index 
using a wrapper class for the index in annoy_model.py. Note that the metrics.py and 
operations.py have been copied from Tovstogan’s implementation [2] for the calculation of the 
required metrics, and the associated alterations to the database via files in 
acousticbrainz-server/admin will also need to be made. 
  
The file annoy_model.py contains the class AnnoyModel, which wraps the Annoy Index and 
has methods for all functionality required to interact with the Annoy Index. This makes it very 
simple for users to interact with the Annoy Index and for features to be built on the index. The 
class will contain the following methods: 
  
·      __init__(self, num_trees, metric, distance_type) 

o   Initialize model with a given number of trees, a keyword for which metric it 
indexes with, and distance_type indicating the method of calculating 
distance. 

 

https://github.com/philtgun/acousticbrainz-server/tree/master/similarity


·      add_items(self, items) 
o   Adds items to the index if it is initialized. Items is a list of tuples to be added, in 

which the first value in a tuple is the identifier for a recording and the second 
value is the vector related to the metric that we look to calculate. 

o   Metric calculations to get vectors are applied based on Tovstogan’s work as in 
the aforementioned proof of concept.​
 

·      build(self) 

o   Builds the index with the number of trees specified for the index. Error checks 
the build process, returning True for a successful build and False with error 
messages. 

 
·      unbuild(self) 

o   Uses unbuild functionality that is added to Annoy, unbuilds the index so that 
new items can be added. Returns True for a successful unbuild and False for 
errors with error messages. 

 
·      save(self, name, base_path) 

o   Saves the index to the disc under the name 'name.ann' with the path 
base_path + 'name.ann'.​
 

·      load(self, path) 
o   Loads the index with the specified path. 
 

·      get_nns_by_id(self, id, num_neighbours, distances) 
o   Queries the index for the nearest neighbours to the recording with the 

specified id. 
o   Number of neighbours returned is num_neighbours, and the function returns a 

list of the neighbours or a list of tuples in which the first element of a tuple is 
the neighbour and the second is the distance, if distances=True. 

 
·      get_nns_by_vector(self, vector, num_neighbours, distances) 

o   Same query as get_nns_by_id, except via the use of a metric vector to 
search rather than an identifier for the recording. 

 
·      get_item_vector(self, id) 

o   Returns the vector for the index’s metric that is associated with the given 
recording identifier 'id' 

 

·      get_distance(self, idA, idB) 
o   Returns the distance between the vectors associated with identifier 'idA' and 

'idB'. 
 



·      get_id(self,mbid) 
o   Given an MBID, this method queries the database for the related integer 

identifier that is used in the Annoy queries, returning this integer. 
 
3. Flask API for Users to Interact with the Index 
  
acousticbrainz-server/webserver/views/api/v1/similarity.py will add an API for 
similarity queries on the AcousticBrainz database. The API methods will make use of the 
existing similarity indexes that are created by Annoy, and the annoy_model.py class to make 
queries. It will include the following GET requests: 
  

bp_similarity = Blueprint('api_v1_similarity', __name__) 

  

@bp_similarity.route("/nns/metric/<uuid:mbid>", methods=["GET"]) 

  
Parameters: MBID, num_neighbours, metric, full_json 
Response Headers - Content-Type: application/json 
 

·      get_nns_by_mbid(mbid, num_neighbours, metric, full_json) 
o   num_neighbours will determine the number of neighbours that are 

returned in by the query. 
o   The index used for the query will depend on the metric selected, i.e. 

there are 12 metrics so the API may query for similarity with respect to 
any of these different metrics. 

o   Nearest neighbours will be calculated for the given mbid. This query is 
done by MBID rather than the integer identifier related to Annoy for 
ease of use. The associated integer id will be taken from the database 
and used in the inner Annoy Index method, thus abstracted from the 
user. 

o   If full_json=True, then the query will collect the high and low level 
data for all nearest neighbours, and return both the mbids of nearest 
neighbours as well as their JSON data. Else, the query returns only 
JSON of nearest neighbour ids and associated vectors. 

 
Sample data response:  
 

 { "neighbours":​
 [{"id1": id1, "vec1": vec1 }, ... , {"idN": idN, "vecN": vecN}]​
} 

  



@bp_similarity.route("/nns/metric/<uuid: mbid>", methods=["GET"]) 

  
Parameters: dataset_id, num_neighbours, metric, full_json 
Response Headers - Content-Type: application/json 
 

·      get_nns_by_mbid(mbid, num_neighbours, metric, full_json) 
o   Retrieves nearest neighbours by MBID for all mbids present in the 

dataset, similar operations to that of retrieval for single recording 
 

Sample data response:  
 

{ ["mbid1": {"neighbours":​
 [{"id1": id1, "vec1": vec1 }, ... , {"idN": idN, "vecN": vecN}] },​
 

"mbid2": {"neighbours":​
 [{"id1": id1, "vec1": vec1 }, ... , {"idN": idN, "vecN": vecN}] }, 

​
... 

 

"mbidN": {"neighbours":​
 [{"id1": id1, "vec1": vec1 }, ... , {"idN": idN, "vecN": vecN}] }]​
} 

 

@bp_similarity.route("/nns/metric/<uuid: mbidA>/<uuid: mbidB>", 

methods=["GET"]) 

  
Parameters: mbidA, mbidB, metric 
Response Headers - Content-Type: application/json 
 

·      get_distance(mbidA, mbidB, metric) 
o   This query returns the distance between the recordings with the given 

two MBIDs in JSON format. Calculates distance using the index 
associated with given metric. 

o   Sample data response: 
{ "metric": metric, "distance": distance } 

  
 
 
 
 



@bp_similarity.route("/nns/metric/<uuid: mbid>/vector", methods=["GET"]) 

  
Parameters: mbid, metric 
Response Headers - Content-Type: application/json 
 

·      get_item_vector(mbid, metric) 
o   Translates the MBID to associated integer id for Annoy, and returns its 

vector for the given metric in JSON format. 
o  Sample data response: 
 { "metric": metric, "mbid": mbid, "vector": vector } 

  
Additionally, after creating the above endpoints it would be ideal to implement a user interface to 
interact with the API. Decidedly, this is not prioritized as highly as creating an offline similarity 
matrix and may take place after the following activities have been completed, i.e. if there is time 
in the last two weeks of GSoC or as future work to add to the project after GSoC. 
 
4. Unit Tests and Create Documentation 
 
After implementing the Annoy Index and its API, the added functionality must be tested 
thoroughly via the introduction of unit tests and clear documentation of the process and its utility. 
  

Offline Similarity Matrix of Recordings with Update System 
  
Overview: 
  
In order to make the similarity index on AcousticBrainz useful for other projects and applications 
in the future, it would be largely beneficial to be able to store the similarity data offline, in the 
form of a matrix. Since the data from the similarity matrix is likely to be read and loaded 
frequently in applications, and speed is prioritized, I believe it would be beneficial to either save 
the matrix as a native numpy object, using the .npy format, or save it in HDF5 using the h5py 
library.  
 
In using npy we will benefit from faster read speeds after the first time that the data is loaded. 
Especially when compared to using other structures like csv for this data, we will save a 
significant amount of time. The load speed for this file type has been shown to be constant over 
increasing file sizes, which will be crucial for our application since the database contains millions 
of recordings. See an experiment on this noted here [8]. Additionally, this allows us to use 
numpy arrays with ease which are more efficient than regular python objects, and are based on 
a vectorized implementation.  
 

https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Pandas%20and%20Numpy/Numpy_Reading.ipynb


On the other hand, HDF5 works efficiently with large datasets and allows for us easily to create, 
share, and analyze our dataset using the same format. With the use of the h5py library, we can 
easily create numpy arrays for matrices and save them in a file to be used in other applications. 
We can also access matrices related to individual metrics as datasets from the same file using 
HDF5, with indexes akin to python dictionary keys. 
  
It will also be necessary to implement a system that updates the offline matrix continuously at a 
given time interval, since recordings will be constantly added and changes in the database. This 
way, the offline matrix that other applications depend on can remain current. 
  
Details: 
 
1. Develop Storage Method and Format 
 
It will be beneficial for other applications to gain access to a large sample of similar recordings 
for each recording in the database. The number of similar recordings held in the matrix may be 
altered in the future or created on a case-by-case basis, however we will begin by creating a 
1001xN matrix for each index, in which N is the number of recordings in the AcousticBrainz 
database. The similarity matrix will be available for each of the 12 metrics. The shape of the 
matrix will be the following, with each recording at the top of a column and the 1000 most similar 
recordings ordered below (note that the leftmost column is for reference, not actually a part of 
the matrix): 
  

Similar 
Recordings 

MBID1 MBID2 MBID3 … … MBIDN 

1 Most 
similar 
MBID 

… … … … Most similar 

… … … … … …   

1000 Least 
similar 
MBID 

… … … … Least 
similar 

  
 
 
 
 



In acousticbrainz/similarity we will add the file matrix_generator.py. The following 
pseudocode will describe the process to generate a matrix in the form of a Numpy array for a 
given index. After generating a numpy array, it can be saved in HDF5 format or using npy: 
  
In matrix_generator.py: 
  

import numpy as np​
import h5py​
from annoy_model import AnnoyModel​
from metrics import BASE_METRICS​
 ​
# Define the following within a function, i.e. gen_matrices()​
# Generates matrix for each of the metrics​
 ​
# initialize HDF5 file with h5py​
h5f_matrices = h5py.File('similarity_matrices.h5', 'w')​
with db.engine.connect() as connection:​
    #Using Tovstogan's api to retrieve all metrics​
    metric_names = metrics.BASE_METRICS #list of metrics​
    for name in metric_names:​
        metric_cls = metric_names[name]​
        metric = metric_cls(connection)​
        metric.create()​
                    ​ ​
        #create AnnoyModel for each metric​
        annoy_index = AnnoyModel(# trees, name, distance_type)​
                    ​ ​
"""get mbids - number of ids batch_size with similar db query to 

_get_recordings_without_similarity() from Tovstogan's api """​
 ​
        mbids = _get_recordings_without_similarity(connection, name, 

batch_size)​
        for mbid in mbids:​
            #get data for mbid related to metric​
            for row_id, data in metric.get_data_batch(mbids):​
                                            ​ ​
                #get vectorized data for metric for each mbid​
                vector = metric.transform(data)​
                index = retrieve id for MBID​
                #add item to AnnoyIndex​
                annoy_index.add_item(index, vector)​
 ​



# all items added to AnnoyIndex, time to build the index with a number of 

trees​
annoy_index.build(# trees)​
np_similarity_matrix = None​
for mbid in mbids:​
    index = retrieve id for MBID​
    neighbours = annoy_index.get_nns_by_id(index, 1000)​
        ​ ​
    # change ids to MBIDs​
    for i in range(1000):​
        neighbours[i] = [query db for mbid with given id]​
        ​ ​
        neighbours = [[mbid]] + neighbours​
        if np_similarity_matrix is None:​
            np_similarity_matrix = (np.array(neighbours)).T​
            continue​
        neighbours_np_array = np.array(neighbours)​
        ​ ​
        # concatenate columns containing MBIDs​
        np_similarity_matrix = np.concat((np_similarity_matrix, 

neighbours_np_array.T), axis=1)​
 ​
matrix_name = name + '_metric_matrix'​
 ​
 ​
# save np_similarity_matrix in .npy format​
matrix_name += '.npy'​
np.save(matrix_name, np_similarity_matrix)​
 ​
or​
 ​
# save np_similarity_matrix in HDF5​
h5f_matrices.create_dataset(matrix_name, data = np_similarity_matrix)​
 ​
# can be loaded with np.load(matrix_name)​
or​
# h5f_matrices = h5py.File('similarity_matrices.h5', 'r')​
# matrix = h5f_matrices[matrix_name] 

  
 
 
 



1.1. Testing Storage Methods 
 
Note that we should attempt saving the matrix using both of these file formats, and develop 
tests using the time library around the saving and loading times when using each of the formats 
before determining the ideal solution. 
  
2. Develop Update Mechanism 
 
The matrix should be regenerated via the above functionality at a given time interval, only 
executing if new recordings have been imported. This can be checked via checking a 
True/False variable within the gen_matrices function: 
  

·  ​ Variable any_new_recordings set to True when recordings imported 
·  ​ Call gen_matrices when recordings are imported 
·  ​ Import threading and time libraries 
·  ​ In beginning of gen_matrices, if any_new_recordings = False, exit from 

function. 
·  ​ Implement threading.Timer(time interval, gen_matrices).start() 

within gen_matrices 
 
3. Unit Testing and Documentation 
  
Finally, it will be necessary to write unit tests to ensure the performance of the added 
functionality related to the offline matrix. This functionality and its utility will also be documented 
appropriately. 
  

Timeline 
  
High Level Timeline 
  
May 6 – 27: Community Bonding Period 
  
I will spend the community bonding period frequently hanging out on the IRC chat, getting to 
know my mentors and the surrounding community on a deeper level, and working on other 
contributions to AcousticBrainz. I will also spend time working with my mentors to sharpen my 
proposal and focus on further developing and clarifying some key aspects of the project, 
ensuring that my project’s features truly meet the needs of the community. I will also spend time 
further gaining an understanding of previous theses and research related to recording similarity, 
and look to begin my implementation of the Annoy Proof of Concept as soon as possible. It will 
also be beneficial to get Tovstogan’s previous implementation running during this period. 
  



May 27 – June 3: Milestone 1 – Annoy Proof of Concept 

  

In the first week of GSoC, I plan to complete the implementation of a proof of concept for similarity 
calculations using the Annoy algorithm. Given that I will have already devoted a sufficient period 
of time to understanding the Annoy algorithm and the existing PostgreSQL implementation 
metric calculations, I expect to be able to focus on building/finishing the proof of concept in this 
period. This will involve extending manage.py with functions similar to those written by 
Tovstogan in similarity/manage.py, implementing changes to the database from the previous 
work, and utilising the metric calculations to create vectors for use in the Annoy Index. I will also 
be creating a copy of Tovstogan’s work that allows me to test his system against the Annoy 
concept. 
  

June 3 – June 11: Milestone 2 – Testing and Experimentation with Annoy Proof of Concept 
  
Once the proof of concept has been implemented, I will dive into further developing the testing 
methodology and working through the tests that I outlined under this section. I will be developing 
tests explicitly between Annoy and the PostgreSQL solution, as well as working with the ANN 
benchmark comparisons to format our dataset and test Annoy against other nearest neighbours 
algorithms. A significant portion of this section will be dedicated to properly, carefully 
documenting and reporting on the results of our experimentation. I will look to visualize the 
results and draw conclusions that will aid future implementations. 
  
June 11 – June 28: Milestone 3 – Similarity Index System with Continuous Update 
  
Once we have verified the use of Annoy or possibly pivoted to another indexing system with a 
proof of concept and conclusive testing, I will focus my time on implementing the index in the 
acousticbrainz-server. I will focus on developing and storing multiple indices for each metric that 
is used to find similarity between recordings. Furthermore, I will develop a mechanism to 
continuously update the indices when new recordings are added. This process will require some 
exploration and possible alteration of the generic Annoy library to allow for us to “unbuild” the 
index and add new items, improving the efficiency of our update system. It will be crucial for me 
to develop unit tests related to this implementation and document the processes before moving 
on to the next task. 
 
July 1 – July 5: Milestone 4 – Similarity Index API 
  
This section of the project has a lighter load, which is designed to provide some extra time to 
sort through possible bug fixes or issues that may have caused setbacks in earlier milestones. 
Aside from working through bug fixes, it will be necessary to implement an API for the new 
similarity index system, allowing for users to access similarity information. I will work to build the 
related functions required for the API and develop unit tests for their functionality, as well as 
clearly document the API for ease of use. 
  

https://github.com/metabrainz/acousticbrainz-server/compare/master...philtgun:master
https://github.com/metabrainz/acousticbrainz-server/compare/master...philtgun:master


July 8 – July 26: Milestone 5 – Offline Similarity Matrix of Recordings 
  
During 5th milestone of my GSoC project, I will focus on creating functionality that creates 
matrices of the most similar recordings to each recording, based on the individual metrics. I will 
create the function to generate matrices and develop both of the possible storage methods, as 
well as considering alternatives. With these different methods of storage, I will perform a series 
of tests related to loading and saving the matrices, ultimately determining the optimal method of 
storage. I will then shift to implement this method of storage offline and create unit tests for the 
functionality related to generating and saving matrices. 
  
July 29 – August 16: Milestone 6 – Update Mechanism for Offline Recordings 
  
As I complete the final milestone of the project, I will focus on implementing a mechanism to 
generate new matrices based on a timer, as well as indicators that new recordings have been 
submitted to the database. I will also write unit tests for this functionality, fix bugs, and use this 
period of time to catch up on any milestones that may have slowed my progress. 
  
August 19 – August 26: Documenting and Deploying 
  
The final week of my GSoC project will be fully dedicated to fixing issues, cleaning up code and 
unit tests, and ensuring that I have clear documentation for the functionality that I’ve added. I 
will spend this time making sure that my implementation is ready to be deployed to the 
acousticbrainz-server, or taken to the future stages of the project. 
 
Future Work 
  
In the future, I truly look forward to continuing to contribute to AcousticBrainz and especially this 
project, of which I have already grown quite fond. I will continue to implement related 
functionality like developing the offline similarity matrix as a data dump. I would also like to 
consider developing a new hybrid metric that accounts for all other metrics, in a sense looking to 
add some sense of finality to the similarity data that we receive from all individual metrics. I 
would then implement the above features with this metric as well. Moreover, I would like to add 
navigation by similarity to AcousticBrainz during the fall after GSoC. I look forward to becoming 
a long term contributor to AcousticBrainz and MetaBrainz as a whole! 

  
 
 
 
 
 



Week-by-Week Timeline 
 

Week Task 

May 6 - 13 Bonding with mentors, fixing tickets, reviewing previous work and docs. 

May 13 - 20 Bonding, implementing Tovstogan’s work locally, discussing project.  

May 20 - 27 Bonding, clarifying issues with mentors, setup/begin Annoy concept  

May 27 - June 3 Finishing Tovstogan’s work, creating Annoy proof of concept 

June 3 - 10 Test Annoy vs. other solutions, utilise ANN benchmarks, documentation 

June 10 - 17 Implement chosen similarity index in acousticbrainz-server 

June 17 - 24 Investigate using “unbuild” for update mechanism, build mechanism 

June 24 - July 1 Finish index update mechanism, unit tests and documentation 

July 1 - 8 Create similarity index API, develop unit tests and document usage 

July 8 - 15 Functionality for matrix generation, develop methods of storage 

July 15 - 22 Test methods of storage for matrix, time for catch up if required 

July 22 - 29 Implement one storage method, unit tests for matrix generation 

July 29 - August 5 Add update mechanism functionality for offline matrix 

August 5 - 12 Finish update mechanism, unit tests and documentation for mechanism 

August 12 - 19 Fix bugs and catch up if necessary, reflect, make possible improvements  

August 19 - 26 Checking tests, documentation, and preparing for final submission 

 

Links 
[1] https://zenodo.org/record/1479769#.XKy3mZNKg1K 
 
[2] https://github.com/philtgun/acousticbrainz-server/tree/master/similarity 
 
[3] https://github.com/spotify/annoy 
 

https://zenodo.org/record/1479769#.XKy3mZNKg1K
https://github.com/philtgun/acousticbrainz-server/tree/master/similarity
https://github.com/spotify/annoy


[4] 
https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-
high-dimensional-spaces.html 
 
[5] https://github.com/metabrainz/acousticbrainz-server/compare/master...philtgun:master 
 
[6] https://github.com/erikbern/ann-benchmarks 
 
[7] https://github.com/spotify/annoy/issues/174 
 
[8] 
https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Pandas%20and%20Nu
mpy/Numpy_Reading.ipynb 
 

Detailed Information about Myself 
My name is Aidan Lawford-Wickham and I am an undergraduate student in Engineering 
Science at the University of Toronto in Canada. I am currently a prospect for specialization in 
the  Machine Intelligence stream. After discovering the Google Summer of Code, I found myself 
most interested in the MetaBrainz Foundation because of my passion for music. 

Tell us about the computer(s) you have available for working on your SoC project! 
 
-I have a PC with Intel 8th gen i5 8600K processor, gtx 1080 graphics, 16gb RAM. I am dual 
booting Ubuntu 18.04 and Windows 10. 
-When I’m not at my desk, I use the early 2015 Macbook Pro 13 inch model, Intel i5 2.7GHz, 
Intel Iris Graphics 6100, 8GB RAM. Running macOS Sierra. 
 

When did you first start programming? 
 
I began learning basic frontend web development during high school in grade 10, and quickly 
introduced myself to Python and Java. In my early days, mobile applications peaked my interest 
and I attended iD Tech Coding and Engineering Academy at MIT for the summer between 
grades 10 and 11 to focus on Android app development. 
 
What type of music do you listen to? (Please list a series of MBIDs as examples.) 
 
I love listening to many genres and find inspiration for making my own music in doing so. 
 
Some of my favourite alternative-pop RnB is from Frank Ocean’s nostalgia,ULTRA. mixtape: 
 
1ee6d0f9-dedb-43db-a337-44acf5be3832, 

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html
https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html
https://github.com/metabrainz/acousticbrainz-server/compare/master...philtgun:master
https://github.com/erikbern/ann-benchmarks
https://github.com/spotify/annoy/issues/174
https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Pandas%20and%20Numpy/Numpy_Reading.ipynb
https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Pandas%20and%20Numpy/Numpy_Reading.ipynb


d212e3ea-27b7-40ba-a322-524f698d8a37, 
37e280a5-f222-4fe8-b544-b4951eabdd5d 
 

I’m deeply interested in rap music and culture, one of my favourite artists is Mac Miller: 
 
e3cb3c99-6125-4ef5-8a23-53268482ca3e, 
29cff7c4-b8fb-44cf-91f1-81bcd31c2e3c, 
6b757544-f6f8-40b0-8d2c-c5ef9b962ca6 
 

I love listening to melodic guitar riffs, hence blues rock from The Allman Brothers Band: 
 
0b018d6e-0e93-416f-838c-d46da444f7aa, 
E9d1d205-4acf-4cd4-b1ea-fb095d065c32 
 

Alternative rock when I’m in the mood - Red Hot Chili Peppers: 
 
4ffc971d-2638-4409-be49-32d1acfe6afd 
 
What aspects of the project you’re applying for (e.g., MusicBrainz, AcousticBrainz, etc.) 
interest you the most? 
 
Given that I am passionate about both music and computer science, finding an area where 
these two subjects overlap would be a dream for me. I’m most interested in the content-based 
data that the AcousticBrainz database holds for such a large number of recordings. I’m 
fascinated by music recommendation systems especially since discovering Spotify’s 
personalized “daily mix” feature, and I’m looking forward to seeing what results we can get from 
building a similarity index into AcousticBrainz. 
 
Additionally, I’m interested by the community aspect of AcousticBrainz and MetaBrainz as a 
whole. I’m intrigued by the welcoming, positive atmosphere of this project and I look forward to 
putting forth my own contributions.  
 
Have you contributed to other Open Source projects? If so, which projects and can we 
see some of your code? 
 
I have not contributed to other Open Source projects. I have, however, made a pull request to 
AcousticBrainz to improve the CONTRIBUTING.md documentation, and another to fix ticket 
AB-387 (Import/Export in CSV with descriptions). 
​
CONTRIBUTING.md - https://github.com/metabrainz/acousticbrainz-server/pull/334 
 
AB-387 - https://github.com/metabrainz/acousticbrainz-server/pull/333 

 

https://github.com/metabrainz/acousticbrainz-server/pull/334
https://github.com/metabrainz/acousticbrainz-server/pull/333


If you have not contributed to open source projects, do you have other code we can look 
at? 
 
My GitHub profile has repositories for a number of projects that I’ve worked on.  
 
I have worked with the University of Toronto data science team this year doing research and 
creating machine learning models to predict energy prices on peak days for Ontario, Canada. 
This is the repo: https://github.com/aidanlw17/energy-demand-forecasting  
 
I recently built a chess game that plays in your favourite shell, featuring both two player and a 
mode playing against an AI. The AI is built using alpha-beta pruning and the minimax algorithm: 
https://github.com/aidanlw17/csc190-chessai/tree/master 
 
This is an instant-chat web application built with Django Channels and a React frontend: 
https://github.com/aidanlw17/locator-anon 
 
I’ve built a program to solve an optimization problem for Formula 1 racing. The program uses 
reinforcement learning techniques to determine the actions (accelerating or braking) of the 
driver at each point on the race track, and also optimizes the car configuration depending on the 
track chosen: 
https://github.com/aidanlw17/daisy-formula-one 
 
My personal website (admittedly a work in progress, but getting there - do not view on mobile 
just yet), https://www.noodlab.com, is built using React: 
https://github.com/aidanlw17/alawfordwickham_site/tree/master/src 
 
I’ve also done stock price prediction using a recurrent neural network: 
https://github.com/aidanlw17/trading-rnn 
 
An android galactic survival game made in Java: 
https://github.com/aidanlw17/AndroidAsteroidsGame 
 
What sorts of programming projects have you done on your own time? 
 
See the above question for some examples. I am very interested in machine learning and data 
science, particularly in time series data. I have pursued projects related to this area in the past 
such as working with the University of Toronto data science team and doing a stock prediction 
project. In terms of data science skills, I have experience working with scikit-learn, numpy, 
tensorflow and keras, and SQL databases. I’m also interested in web development. Given my 
data science background, I’m very fond of python and so I’ve spent time developing backend 
with Django and Flask. I also enjoy frontend development and have worked with React. I love 
playing video games and have naturally been drawn to building games like a galactic thriller for 

https://github.com/aidanlw17
https://github.com/aidanlw17/energy-demand-forecasting
https://github.com/aidanlw17/csc190-chessai/tree/master
https://github.com/aidanlw17/locator-anon
https://github.com/aidanlw17/daisy-formula-one
https://www.noodlab.com
https://github.com/aidanlw17/alawfordwickham_site/tree/master/src
https://github.com/aidanlw17/trading-rnn
https://github.com/aidanlw17/AndroidAsteroidsGame


the Android platform. I have experience writing sorting algorithms in C, and worked this year as 
the embedded systems lead for the Phantom SUMO robot team at the University of Toronto. 
 
How much time do you have available, and how would you plan to use it? 
 
I plan to be working on my GSoC project full time - I expect to put 40+ hours of work into this 
project weekly, or at least 8 hours a day. I will also be available to work on the weekends 
whenever necessary. In my spare time during the summer, I will enjoy water sports like sailing 
and wakesurfing, and playing soccer.  
 
Do you plan to have a job or study during the summer in conjunction with Summer of 
Code? 
 
Aside from GSoC, I will not be working this summer. I will dedicate some of my spare time on 
weekends to my side projects to continue developing my skills in machine learning and web 
development, however I also expect to further develop my skills via my GSoC work. 


	 
	Links 
	Detailed Information about Myself 

