
Last updated: May 15th, 2024 | 9-patch segment

Last modified: Jan 24th, 2025 (ported to a document in the chromium contributors drive)

Deprecated, this document was ported to:
 Fluent Scrollbars Technical Design Doc

Fluent Scrollbars Technical Design Doc.
Public document

Gastón Rodríguez
Rahul Arakeri

Yaroslav Shalivskyy

Visual specs: Fluent Scrollbars Visual Spec

State management (Overlay Scrollbars):
(Please see the visual spec (Section: State transitions) linked above to understand how the scrollbar looks in
various states.)

cc thread

ScrollbarAnimationController and the SingleScrollbarAnimationControllerThinning handle the state transitions in
cc. The following diagrams show stack traces for how the transitions will occur.

https://docs.google.com/document/d/1GCmz2nbJV1XiopoLHnlrVaHCjhQMdiyDfPN_a22OIjU/edit?tab=t.0
https://docs.google.com/document/d/1haDpb1QIh2PaLwsQD1i4WHFq_5_jSK3XK9lhgSs4WkM/edit?tab=t.0
https://docs.google.com/document/d/1EpJnWAcPCxBQo6zPGR1Tg1NACiIJ-6dk7cYyK1DhBWw/comment#heading=h.1f19kc8u03sz

Transitions diagram

Stack traces of function calls for Transitions. This isn’t an exhaustive diagram of all contemplated transitions, but it

covers the main function calls involved in all transitions.

Main thread

In Blink, state transitions are handled in ScrollableArea. This class will be modified to accommodate the new
state transitions.

2

Hit testing:
cc thread

Non-overlay and Overlay scrollbars are backed by PaintedScrollbarLayer and they will be hit tested by
cc::ScrollbarController. No new code will be needed here. The following diagram is only for reference.

Fluent scrollbar parts (i.e rect dimensions) are decided by looking up the ScrollbarThemeFluent . Please see
the class diagram in the “Painting” section to understand the hierarchy. Once it is added, an example of how
scrollbar dimensions will be retrieved is shown below:

blink::ScrollbarThemeFluent::BackButtonRect
blink::ScrollbarLayerDelegate::BackButtonRect
cc::PaintedOverlayScrollbarLayer::UpdateWinStyleProperties
cc::PaintedOverlayScrollbarLayer::Update

3

https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/scroll/scrollbar_theme_fluent.cc?q=scrollbarthemefluent

​
Main thread

Blink scrollbars will be hit tested by ScrollbarTheme::HitTest. This is how the newly added
ScrollbarThemeFluent matches for scrollbar parts..

For the remaining scrollbar parts, the track is split up as shown below (and ScrollbarTheme::HitTest will return
the appropriate rect):

4

Painting:
This section describes the scrollbar painting pipeline across ui/, blink/, and cc/ modules. We provide the
description for proposed changes in each module.

Regardless of the compositing being used, Fluent scrollbars painting is aided by NativeThemeFluent and
ScrollbarThemeFluent classes, which help define dimensions and paint the bitmaps that are used by the
scrollbars. The scrollbar parts paint invalidations happen in blink’s Scrollbar class when appropriate.

Main thread painting

Fluent scrollbars utilize the same architecture as regular scrollbars, painting via ScrollbarDisplayItem and the
PaintArtifactCompositor.

cc thread painting

Composited Fluent scrollbars are implemented on the PaintedScrollbarLayer(Impl) classes.

The scrollbar thumb will be painted entirely on the compositor thread, without a need for a bitmap to be painted
and passed between threads. This is done by applying a mask to a solid color quad at composite time. The
color for the thumb is piped from the main thread into the compositor thread by the layer classes.

5

https://source.chromium.org/chromium/chromium/src/+/main:ui/native_theme/native_theme_fluent.cc?q=nativethemefluent
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/scroll/scrollbar_theme_fluent.cc?q=scrollbarthemefluent
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/scroll/scrollbar.cc?q=scrollbar.cc
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/platform/graphics/paint/scrollbar_display_item.cc;l=42?q=scrollbardisplayitem
https://source.chromium.org/chromium/chromium/src/+/main:cc/layers/painted_scrollbar_layer.h?q=painted_scrollbar_layer
https://source.chromium.org/chromium/chromium/src/+/main:cc/layers/painted_scrollbar_layer_impl.h

The scrollbar track and buttons are painted and scaled using a 9-patch architecture. To understand the basics of
9-patch, reading this article is recommended. Using 9-patch scaling, the scrollbar parts would be painted the
smallest possible bitmap, which would then be expanded to the appropriate size at composite time.

The smallest possible bitmap for the scrollbar buttons and track.

Following the existing Chromium implementation of 9-patch scaling, all images need two things defined: the
canvas and the aperture. The canvas is the size of the smallest possible bitmap that would represent the image,
and the aperture is a Rect which describes the center-patch for the image. In Chromium, buttons, track, and tick
marks are all painted in the same bitmap.

●​ Canvas: The minimal possible dimensions a Fluent scrollbar can have is two times the length of a
button, plus an extra pixel in between these two points for the center-patch. The width of the scrollbar
would remain unmodified.

6

https://medium.com/flobiz-blog/create-resizable-bitmaps-9-patch-files-48c774db4526
https://source.chromium.org/chromium/chromium/src/+/main:cc/layers/nine_patch_generator.h

●​ Aperture: Scrollbars are only expanded in the direction of their scrolls, and not widened. To have the
appropriate scaling, one pixel in the center of the bitmap is enough.​
When the scrollbars width is even, the button arrow will be painted with two “top” pixels, to enable proper
scaling, the aperture will be two pixels wide instead of one.

Scrollbars smallest bitmap required to represent the scrollbar in its entirety

7

Diagram showing how the scrollbars would be expanded using 9-patch's architecture.

When find in page tick marks are present, nine patch scaling is not used and a full sized bitmap is used that
contains all the tick marks.

Thinning animation

cc::ScrollbarAnimationController manages the scrollbars’ animation state and supplies the thumb thickness to
the cc::ScrollbarLayerImplBase on each animation tick.

cc::ScrollbarLayerImplBase::SetThumbThicknessScaleFactor
cc::SingleScrollbarAnimationControllerThinning::ApplyThumbThicknessScale
cc::SingleScrollbarAnimationControllerThinning::RunAnimationFrame
cc::SingleScrollbarAnimationControllerThinning::Animate
cc::ScrollbarAnimationController::Animate
cc::LayerTreeHostImpl::AnimateScrollbars
...
cc::Scheduler::BeginImplFrame

The thumb thickness value is used to calculate the correct size and location for the thumb rect and append
TextureDrawQuads to the GPU process (link). Rasterized thumb resource (bitmap) is being scaled to the
specified thumb rect geometry on the GPU process to be drawn on each frame. We are reusing the
implementation that already exists in Chromium.

8

https://source.chromium.org/chromium/chromium/src/+/main:cc/layers/painted_scrollbar_layer_impl.cc;l=94

The main difference between Fluent overlay scrollbars and Chromium overlay scrollbars is the usage of a
nine-patch architecture. Existing Chromium overlay scrollbars that are enabled by default on Android,
ChromeOS, Fuchsia, and are available under the feature flag on other non-mac platforms use the nine-patch
generator for creating draw quads for the thumb. As was mentioned in CRBug, nine-patch architecture prevents
the stroke around the thumb from scaling during thinning animation. Fluent overlay scrollbar thumb UI design
doesn’t contain any strokes, thus, doesn’t require such functionality.

The thinning animation is not supported on the main thread since there’s no equivalent to
cc::ScrollbarAnimationController in Blink.

Animations:
State transitions are managed with two types of animations: thinning and opacity animations. This section aims to
explain the relationship between a layer's opacity, the thumb’s thickness and the thumb and track’s opacity.
Every Fluent scrollbar is represented by a PaintedScrollbarLayerImpl layer object. For overlay animations, we care
mainly about two properties of the layer object: its opacity and its scrollbar thumb thickness factor. Opacity is a
value that goes from zero to one, and the thickness factor is a value that goes from kIdleThickness to one.

 𝑂𝑝𝑎𝑐𝑖𝑡𝑦 ∈ [0, 1]
 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠_𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟_ ∈ [𝑘𝐼𝑑𝑙𝑒𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠, 1]

If the thumb’s thickness scale factor value is kIdleThickness, that means the scrollbars are in Minimal Mode and
the track and buttons should not be visible. If the scale factor is greater than kIdleThickness, then the scrollbar is
either in Full Mode (= 1) and the track and buttons should be fully opaque, or the 𝑡ℎ𝑢𝑚𝑏_𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠_𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟
thickness factor is somewhere in between its max and min value and should be drawn with a decreased opacity.

Thumb scale factor and track opacity:
Transitions between Minimal mode and Full mode are managed by an instance of
SingleScrollbarAnimationControllerThinning. When a thinning animation is triggered, the Controller will interpolate
the scrollbar’s thumb thickness scale factor towards the desired value (depending on which type of animation is
queued)[1]. When the scale factor is greater than its minimum value, then the layer object will interpolate the
track’s and button’s opacity to create a fade in effect. The relation between the thumb_thickness_scale_factor_ and
the track’s opacity is as follows:

 (𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠_𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟_ == 𝑘𝐼𝑑𝑙𝑒𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑆𝑐𝑎𝑙𝑒) => (𝑡𝑟𝑎𝑐𝑘𝑠_𝑜𝑝𝑎𝑐𝑖𝑡𝑦 == 0)
 (𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠_𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟_ == 1) => (𝑡𝑟𝑎𝑐𝑘_𝑜𝑝𝑎𝑐𝑖𝑡𝑦 == 1)

 𝑡𝑟𝑎𝑐𝑘𝑠_𝑜𝑝𝑎𝑐𝑖𝑡𝑦 = (𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠_𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟_ − 𝑘𝐼𝑑𝑙𝑒𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑆𝑐𝑎𝑙𝑒) / (1 − 𝑘𝐼𝑑𝑙𝑒𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑆𝑐𝑎𝑙𝑒)

Layer opacity:
The layer object’s opacity is managed by the ScrollbarAnimationController which only manages transitions
between Invisible Mode and the other two.
When the layer’s opacity is set to one, that guarantees that the thumb is being shown, but that doesn’t imply that
the whole scrollbar is visible since its visibility depends on the thickness scale factor.

Testing:
Both overlay and non-overlay Fluent scrollbars are tested extensively by unit, browser and web tests.

9

https://source.chromium.org/chromium/chromium/src/+/main:ui/native_theme/native_theme_features.cc;l=24
https://source.chromium.org/chromium/chromium/src/+/main:cc/layers/nine_patch_generator.h;l=31
https://source.chromium.org/chromium/chromium/src/+/main:cc/layers/nine_patch_generator.h;l=31
https://source.chromium.org/chromium/chromium/src/+/main:cc/layers/painted_overlay_scrollbar_layer_impl.cc;l=128
https://bugs.chromium.org/p/chromium/issues/detail?id=669670

Since this feature will be on by default for Windows, we anticipate a significant test churn due to the visual and
layout differences*. There are a few options we can explore to deal with this issue. (Please note that these are
just suggestions/thoughts at this point and we're open to other ways of dealing with it. We’ve not fully thought
through this yet.)

-​ Use VirtualTestSuites: Start deep in the directory structure and then keep moving up. For e.g: start with
fast/scrolling/scrollbars, update them to work with fluent scrollbars. The regular tests will likely fail. Add
them to TestExpectations. Repeat this as you move up to fast/scrolling and then to fast/ and so on. Once
all tests have been adapted, the flag can be turned on by default and the TestExpectations can be
cleaned.

-​ Follow the Mac route of using mock scrollbars (window.internals.useMockOverlayScrollbars). The
downside of doing this would be that the tests would not be testing the real thing.

To preserve test coverage for non-fluent scrollbars we can fork fast/scrolling/scrollbars and use VirtualTestSuites
(with fluent scrollbars disabled).

TBD - Feature exposure:
How Fluent Overlay scrollbars will be exposed after the implementation is complete is yet to be decided.
The intention right now is to make the feature flag expose a new option in chrome://settings that will control the

Fluent scrollbars mode.
Adding a new setting requires more overhead because of the increased exposure of the feature, as said in the

docs:

Settings
Example: “Show home button”
Settings are implemented in WebUI, and show up in chrome://settings or one of its subpages. They
generally are bound to a pref which stores the value of that setting. These are comparatively
expensive to add, since they require localization and some amount of UX involvement to
figure out how to fit them into chrome://settings, plus documentation and support material.
Many settings are implemented via prefs, but not all prefs correspond to settings; some are used
for tracking internal browser state across restarts.

Intention - Always show scrollbars:

The feature introduces a new setting in chrome://settings/appearance that allows a user to control the type of
scrollbars and switch between overlay and non-overlay Fluent scrollbars.To see the differences in design,
please visit the visual spec document linked above.

The setting will register a new preference which will determine the mode of the scrollbars. On startup,
BrowserView will register an observer to oversee the changes in the pref, and set the correct overlay mode in
the browser process’ NativeTheme. NativeTheme will update its new flag that determines the status of this
setting, and if it is different will call NotifyOnNativeThemeUpdated(), which will notify the renderer processes of
the change in scrollbar mode. Through ThemeHelper and RenderThreadImpl the change will reach Page, which
will update all the page’s ScrollbarTheme and update the ScrollbarThemeSettings::OverlayScrollbarsEnabled().

On pref change, the observer will notify the browser process’ NativeTheme, and through
NotifyOnNativeThemeUpdated() the new setting will be spread to existing renderer processes

10

https://chromium.googlesource.com/chromium/src/+/main/docs/configuration.md#settings
https://chromium.googlesource.com/chromium/src/+/master/chrome/browser/prefs/
https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/ui/views/frame/browser_view.cc;l=841?q=browser_view.cc

Outstanding issues:
1.​ Non-layered scrollbars don't animate since there’s no equivalent to cc::ScrollbarAnimationController in

Blink.

Potential follow-up work:
●​ Implement similar behavior for regular aura scrollbars: Fluent scrollbars code is mainly based on

*Aura classes (ScrollbarThemeAura, NativeThemeAura, PaintedScrollbarLayer, etc). If upstream
expresses interest in reworking the regular chromium scrollbars for them to use 9-patch and or paint on
impl thread, we could see to implement it.

11

	State management (Overlay Scrollbars):
	cc thread
	Main thread

	Hit testing:
	cc thread
	​Main thread

	Painting:
	Main thread painting
	cc thread painting
	Thinning animation

	Animations:
	Thumb scale factor and track opacity:
	Layer opacity:

	Testing:
	TBD - Feature exposure:
	Intention - Always show scrollbars:

	Outstanding issues:
	Potential follow-up work:

