Last updated: May 15th, 2024 | 9-patch segment

Last modified: Jan 24th. 2025 (ported to a document in the chromium contributors drive)

Deprecated. this document was ported to:
S Fluent Scrollbars Technical Design Doc

Fluent Scrollbars Technical Design Doc.
Public document

Gaston Rodriguez
Rahul Arakeri
Yaroslav Shalivskyy

Visual specs: E Fluent Scrollbars Visual Spec

State management (Overlay Scrollbars):

(Please see the visual spec (Section: State transitions) linked above to understand how the scrollbar looks in
various states.)

cc thread

ScrollbarAnimationController and the SingleScrollbarAnimationControllerThinning handle the state transitions in
cc. The following diagrams show stack traces for how the transitions will occur.

https://docs.google.com/document/d/1GCmz2nbJV1XiopoLHnlrVaHCjhQMdiyDfPN_a22OIjU/edit?tab=t.0
https://docs.google.com/document/d/1haDpb1QIh2PaLwsQD1i4WHFq_5_jSK3XK9lhgSs4WkM/edit?tab=t.0
https://docs.google.com/document/d/1EpJnWAcPCxBQo6zPGR1Tg1NACiIJ-6dk7cYyK1DhBWw/comment#heading=h.1f19kc8u03sz

- Pointer remains within scrollbar region
- Tickmarks are still being shown
- Thumb is captured

- Search tickmarks are brought up l

- User starts scrolling with mouse over scrollbar region

Full Mode

- Pointer is moving within

the scrollable area - Pointer moves over the scrollbar's region

- Scrolling happens - Search tickmarks are brought up

- Scrollable area is resized » Minimal mode

E Pointer leaves the scrollbar's region
- Search is closed
- Thumb is released over scrollable area

F Y

- No scrolling and no mouse movements for a small duration
- Pointer leaves scrollable area

)
t - ‘— Pointer leaves scrollable area

R TR AT, - Thumb is released outside scrollable area

scrollable area
- Pointer enter or leaves
scrollable area

Hidden Mode

Transitions diagram

[x]

c:-SingleScrollbarAnimationControllerThinning:-Apply ThumbThicknessScale

o cc::SingIeScroII_barﬁnimaliunCuntrollerThinning::UpdateThumbThicknessS{:ale Tickmarks enabled
Tickmarks visibility ccoScrollbarAnimationController::UpdateScrollbarSiate »| Transition to Full mode
changes ccScrollbarAnimationController::Update TickmarksVisibility J i

cc:LayerTreelmpl-HandleTickmarksVisibilityChange
ccLayerTreelmpl::PushPropertiesTo

'y

Mouse is over scrolibar track

Pointer moves over
scrolibar track

Tickmarks disabled

R

cc:ScrollbarAnimationController::UpdateScrollbarState 1 Mouse not over scrollbar track

cc::ScrollbarAnimationController--WillUpdateScroll
cc:LayerTreeHostimpl:WillScrollContent
ccInputHandler::ScrollUpdate

Scrolling happens

»| Transition to minimal mode

Pointer moves away from scrollbar frack

Pointer moves over
scrollbar frack

Pointer leaves ,_(
scrollable area]

Transition to hidden mode

cc::ScrollbarAnimationController:DidMouseMove
Lcc::InputHandIer::MDuseMovem

cc::SingleScrollbarAnimationControllerThinning::DidMouseMove 1 Pointer leaves scrollable area

Pointer moves away
from scrollbar track

Stack traces of function calls for Transitions. This isn’t an exhaustive diagram of all contemplated transitions, but it
covers the main function calls involved in all transitions.

Main thread

In Blink, state transitions are handled in ScrollableArea. This class will be modified to accommodate the new
state transitions.

Main thread state transitions. e
Transition fo full mode.

Pointer moves over scrollbar. blink::ScrollableArea::MouseEnteredScrollbar
blink::Scrollbar::MouseEntered
blink::EventHandler::UpdateLastScrollbarUnderMouse
blink::EventHandler::HandleMouseMoveOrLeaveEvent
blink::EventHandler::HandleMouseMoveEvent

Pointer enters
Scrollablefrea.

h 4

Hit testing:

cc thread

Non-overlay and Overlay scrollbars are backed by PaintedScrollbarLayer and they will be hit tested by
cc::ScrollbarController. No new code will be needed here. The following diagram is only for reference.

Back Track. Forward Track.
cc PaintedScrollbarLayerimpl::BackTrackRect cco:PaintedScrollbarLayerimpl:: ForwardTrackRect
cc-ScrollbarLayerimplBase: ldentifyScrollbarPart ccoScrollbarLayerimplBase: IdentifyScrollbarPart
ccScrolibarController::GetScrolloarPartFromPointerDown cc:ScrolibarController:: GetScrollbarPartFromPointerDown
ccScrollbarController::HandlePointerDown cc:ScrollbarController::HandlePointerDown
cc: ThreadedinputHandler:-MouseDown cc:: ThreadedinputHandler-MouseDown

4 »
EBack Button. Forward Button.
oo PaintedScrollbarLayerimpl::BackButtonRect ccPaintedScrollbarLayverimpl: - ForwardButtonRect
cc ScrollbarLayerimplBase: |dentifyScroflbarPart ccScrollbarLayerimplBase: ldentifyScrolibarPart
cc:ScrollbarContreller:: GetScrollbarPartFromPointerDown ccScrolibarController:: GetScrollparPartFromPointerDown
ccScrollbarConireller::HandlePointerDown cc:ScrollbarConiroller:HandlePointerDown
cc:ThreadedinputHandler::MouseDown cc.. ThreadedinputHandler::MouseDown
h 4

4 R

Thumb.

cc::ScrollbarLayerimplBase. . Compute ThumbQuadRectWithThumbThicknessScale
ccoScrollbarLayerimpiBase::ComputeThumbQuadRect

cco ScrollbarLayerimplBase:: Compute ThumbQuadRectForThumbHittest
ccoScrollbarLayerimplBase: ldentifyScroflbarPart

cc:ScrollbarController: :GetScrollbarParitFromPointerDown
cco:ScrolibarController::HandlePointerDown

.\EE:Thre adedinputHandier:-MouseDown _//

Fluent scrollbar parts (i.e rect dimensions) are decided by looking up the ScrollbarThemeFluent . Please see

the class diagram in the “Painting” section to understand the hierarchy. Once it is added, an example of how
scrollbar dimensions will be retrieved is shown below:

blink: :ScrollbarThemeFluent: :BackButtonRect
blink::ScrollbarLayerDelegate: :BackButtonRect
cc::PaintedOverlayScrollbarLayer: :UpdateWinStyleProperties
cc::PaintedOverlayScrollbarLayer: :Update

https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/scroll/scrollbar_theme_fluent.cc?q=scrollbarthemefluent

Main thread

Blink scrollbars will be hit tested by ScrollbarTheme::HitTest. This is how the newly added
ScrollbarThemeFluent matches for scrollbar parts..

Track

blink:-ScrollbarThemeFluent:: TrackRect

blink: - ScrollbarTheme: HitTest
blink::ScrollbarTheme: HitTestRootFramePosition
blink::Scrollbar::MouseDown

] B
Back Bufton. Forward Button.
blink:-ScrollbarThemeFluent:BackButionRect blink:-ScrollbarThemeFluent :ForwardButtonRect
blink::ScrollbarTheme: HitTest blink::ScrollbarTheme: HitTest
blink::ScrollbarTheme:: HitTestRootFramePosition blink::ScrollbarTheme: HitTestRootFramePosition
blink:-Scrollbar:-MouseDown blink:-Scrollbar:-MouseDown

For the remaining scrollbar parts, the track is split up as shown below (and ScrollbarTheme::HitTest will return
the appropriate rect):

i e

blink:-ScrollbarTheme:: SplitTrack
blink:-ScrollbarTheme::HitTest
blink:-ScrollbarTheme:HitTestRootFramePosition
blink:-Scrollbar:-MouseDown

o w4

kBackTrackPart

l}-:Th umbPart] !P:Fn rwardTrack F'art}

[A | |

Painting:

This section describes the scrollbar painting pipeline across ui/, blink/, and cc/ modules. We provide the
description for proposed changes in each module.

Regardless of the compositing being used, Fluent scrollbars painting is aided by Native ThemeFluent and
ScrollbarThemeFluent classes, which help define dimensions and paint the bitmaps that are used by the
scrollbars. The scrollbar parts paint invalidations happen in blink’s Scrollbar class when appropriate.

Main thread painting

Fluent scrollbars utilize the same architecture as regular scrollbars, painting via ScrollbarDisplayltem and the
PaintArtifactCompositor.

cc thread painting
Composited Fluent scrollbars are implemented on the PaintedScrollbarlLayer(lmpl) classes.
The scrollbar thumb will be painted entirely on the compositor thread, without a need for a bitmap to be painted

and passed between threads. This is done by applying a mask to a solid color quad at composite time. The
color for the thumb is piped from the main thread into the compositor thread by the layer classes.

https://source.chromium.org/chromium/chromium/src/+/main:ui/native_theme/native_theme_fluent.cc?q=nativethemefluent
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/scroll/scrollbar_theme_fluent.cc?q=scrollbarthemefluent
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/scroll/scrollbar.cc?q=scrollbar.cc
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/platform/graphics/paint/scrollbar_display_item.cc;l=42?q=scrollbardisplayitem
https://source.chromium.org/chromium/chromium/src/+/main:cc/layers/painted_scrollbar_layer.h?q=painted_scrollbar_layer
https://source.chromium.org/chromium/chromium/src/+/main:cc/layers/painted_scrollbar_layer_impl.h

Main thread Compositor thread

PaintedScrollbarLayer::Update gets
called.

Instead of creating a bitmap for the
thumb, it retrieves the correct color for
the thumb from the new ScrollbarTheme
-> NativeTheme pipeline.

eventually..

PaintedScrollbarLayerimpl::SetFluentThumbColor

PaintedScrollbarLayerimpl::SetFluentThumbColor

PaintedScrollbarLayerlmpl::AppendQuads gets called.
Instead of appending a quad with the thumb's bitmap, it

will create a SolidColorDrawQuad with the correct color
and apply a mask to get rounded corners

The scrollbar track and buttons are painted and scaled using a 9-patch architecture. To understand the basics of
9-patch, reading this article is recommended. Using 9-patch scaling, the scrollbar parts would be painted the
smallest possible bitmap, which would then be expanded to the appropriate size at composite time.

The smallest possible bitmap for the scrollbar buttons and track.

Following the existing Chromium implementation of 9-patch scaling, all images need two things defined: the
canvas and the aperture. The canvas is the size of the smallest possible bitmap that would represent the image,
and the aperture is a Rect which describes the center-patch for the image. In Chromium, buttons, track, and tick

marks are all painted in the same bitmap.

e Canvas: The minimal possible dimensions a Fluent scrollbar can have is two times the length of a
button, plus an extra pixel in between these two points for the center-patch. The width of the scrollbar

would remain unmodified.

https://medium.com/flobiz-blog/create-resizable-bitmaps-9-patch-files-48c774db4526
https://source.chromium.org/chromium/chromium/src/+/main:cc/layers/nine_patch_generator.h

e Aperture: Scrollbars are only expanded in the direction of their scrolls, and not widened. To have the
appropriate scaling, one pixel in the center of the bitmap is enough.
When the scrollbars width is even, the button arrow will be painted with two “top” pixels, to enable proper
scaling, the aperture will be two pixels wide instead of one.

button

length Center patch/

_— Aperture

+1

button
length

Scrollbars smallest bitmap required to represent the scrollbar in its entirety

Top-left Top -right
patc patch
Center patch/
butt " Aperture
{i\ :: Center patch/ L
“ng / Aperture
1 ! Center-left Center-right
patch patch
button
length
Bottom-left Bottom-right
patch patch

Diagram showing how the scrollbars would be expanded using 9-patch's architecture.

When find in page tick marks are present, nine patch scaling is not used and a full sized bitmap is used that
contains all the tick marks.

Thinning animation

cc::ScrollbarAnimationController manages the scrollbars’ animation state and supplies the thumb thickness to
the cc::ScrollbarLayerlmplBase on each animation tick.

ccC:
ccC:
ccC:
ccC:
ccC:

cc

ccC:

:ScrollbarlLayerImplBase: :SetThumbThicknessScaleFactor
:SingleScrollbarAnimationControllerThinning: :ApplyThumbThicknessScale
:SingleScrollbarAnimationControllerThinning: :RunAnimationFrame
:SingleScrollbarAnimationControllerThinning::Animate
:ScrollbarAnimationController: :Animate
::LayerTreeHostImpl::AnimateScrollbars

:Scheduler::BeginImplFrame

The thumb thickness value is used to calculate the correct size and location for the thumb rect and append
TextureDrawQuads to the GPU process (link). Rasterized thumb resource (bitmap) is being scaled to the
specified thumb rect geometry on the GPU process to be drawn on each frame. We are reusing the
implementation that already exists in Chromium.

https://source.chromium.org/chromium/chromium/src/+/main:cc/layers/painted_scrollbar_layer_impl.cc;l=94

The main difference between Fluent overlay scrollbars and Chromium overlay scrollbars is the usage of a
nine-patch architecture. Existing Chromium overlay scrollbars that are enabled by default on Android,
ChromeQS, Fuchsia, and are available under the feature flag on other non-mac platforms use the nine-patch
generator for creating draw quads for the thumb. As was mentioned in CRBug, nine-patch architecture prevents
the stroke around the thumb from scaling during thinning animation. Fluent overlay scrollbar thumb Ul design
doesn’t contain any strokes, thus, doesn’t require such functionality.

The thinning animation is not supported on the main thread since there’s no equivalent to
cc::ScrollbarAnimationController in Blink.

Animations:

State transitions are managed with two types of animations: thinning and opacity animations. This section aims to
explain the relationship between a layer's opacity, the thumb’s thickness and the thumb and track’s opacity.

Every Fluent scrollbar is represented by a PaintedScrollbarLayerlmpl layer object. For overlay animations, we care
mainly about two properties of the layer object: its opacity and its scrollbar thumb thickness factor. Opacity is a
value that goes from zero to one, and the thickness factor is a value that goes from kldle Thickness to one.

Opacity € [0, 1]
thickness_scale_factor_ € [kldleThickness, 1]

If the thumb’s thickness scale factor value is kldle Thickness, that means the scrollbars are in Minimal Mode and
the track and buttons should not be visible. If the scale factor is greater than kldle Thickness, then the scrollbar is
either in Full Mode (thumb_thickness_scale_factor = 1) and the track and buttons should be fully opaque, or the
thickness factor is somewhere in between its max and min value and should be drawn with a decreased opacity.

Thumb scale factor and track opacity:

Transitions between Minimal mode and Full mode are managed by an instance of
SingleScrollbarAnimationControllerThinning. When a thinning animation is triggered, the Controller will interpolate
the scrollbar’s thumb thickness scale factor towards the desired value (depending on which type of animation is
queued)[1]. When the scale factor is greater than its minimum value, then the layer object will interpolate the
track’s and button’s opacity to create a fade in effect. The relation between the thumb_thickness_scale_factor_ and
the track’s opacity is as follows:

(thickness_scale_factor_ == kldleThicknessScale) => (tracks_opacity == 0)

(thickness_scale_factor_ == 1) => (track_opacity == 1)

tracks_opacity = (thickness_scale_factor_ — kldleThicknessScale) / (1 — kldleThicknessScale)

Layer opacity:

The layer object’s opacity is managed by the ScrollbarAnimationController which only manages transitions
between Invisible Mode and the other two.

When the layer’s opacity is set to one, that guarantees that the thumb is being shown, but that doesn’t imply that
the whole scrollbar is visible since its visibility depends on the thickness scale factor.

Testing:

Both overlay and non-overlay Fluent scrollbars are tested extensively by unit, browser and web tests.

https://source.chromium.org/chromium/chromium/src/+/main:ui/native_theme/native_theme_features.cc;l=24
https://source.chromium.org/chromium/chromium/src/+/main:cc/layers/nine_patch_generator.h;l=31
https://source.chromium.org/chromium/chromium/src/+/main:cc/layers/nine_patch_generator.h;l=31
https://source.chromium.org/chromium/chromium/src/+/main:cc/layers/painted_overlay_scrollbar_layer_impl.cc;l=128
https://bugs.chromium.org/p/chromium/issues/detail?id=669670

Since this feature will be on by default for Windows, we anticipate a significant test churn due to the visual and
layout differences*. There are a few options we can explore to deal with this issue. (Please note that these are
just suggestions/thoughts at this point and we're open to other ways of dealing with it. We’ve not fully thought
through this yet.)

- Use VirtualTestSuites: Start deep in the directory structure and then keep moving up. For e.g: start with
fast/scrolling/scrollbars, update them to work with fluent scrollbars. The regular tests will likely fail. Add
them to TestExpectations. Repeat this as you move up to fast/scrolling and then to fast/ and so on. Once
all tests have been adapted, the flag can be turned on by default and the TestExpectations can be
cleaned.

- Follow the Mac route of using mock scrollbars (window.internals.useMockOverlayScrollbars). The
downside of doing this would be that the tests would not be testing the real thing.

To preserve test coverage for non-fluent scrollbars we can fork fast/scrolling/scrollbars and use VirtualTestSuites
(with fluent scrollbars disabled).

TBD - Feature exposure:

How Fluent Overlay scrollbars will be exposed after the implementation is complete is yet to be decided.

The intention right now is to make the feature flag expose a new option in chrome://settings that will control the
Fluent scrollbars mode.

Adding a new setting requires more overhead because of the increased exposure of the feature, as said in the
docs:

Settings

Example: “Show home button”

Settings are implemented in WebUI, and show up in chrome://settings or one of its subpages. They
generally are bound to a pref which stores the value of that setting. These are comparatively
expensive to add, since they require localization and some amount of UX involvement to
figure out how to fit them into chrome://settings, plus documentation and support material.
Many settings are implemented via prefs, but not all prefs correspond to settings; some are used
for tracking internal browser state across restarts.

Intention - Always show scrollbars:

The feature introduces a new setting in chrome://settings/appearance that allows a user to control the type of
scrollbars and switch between overlay and non-overlay Fluent scrollbars.To see the differences in design,
please visit the visual spec document linked above.

The setting will register a new preference which will determine the mode of the scrollbars. On startup,
BrowserView will register an observer to oversee the changes in the pref, and set the correct overlay mode in
the browser process’ Native Theme. Native Theme will update its new flag that determines the status of this
setting, and if it is different will call NotifyOnNative ThemeUpdated(), which will notify the renderer processes of
the change in scrollbar mode. Through ThemeHelper and RenderThreadlmpl the change will reach Page, which
will update all the page’s ScrollbarTheme and update the ScrollbarThemeSettings::OverlayScrollbarsEnabled().

On pref change, the observer will notify the browser process’ Native Theme, and through
NotifyOnNative ThemeUpdated() the new setting will be spread to existing renderer processes

10

https://chromium.googlesource.com/chromium/src/+/main/docs/configuration.md#settings
https://chromium.googlesource.com/chromium/src/+/master/chrome/browser/prefs/
https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/ui/views/frame/browser_view.cc;l=841?q=browser_view.cc

/ Browser Process \ / Renderer Process \
0on seﬂing Changg w R / \
Through mojo to Renderer process

content - ThemeHelper:OnNativeThemeUpdated
ui::MativeTheme::NotifyOnMative ThemeUpdated
ui::MativeTheme::Update AlwaysShowScrollbarsFromPref
BrowserView::FluentScrollbarLoadPrefs
BrowserView::OnAlwaysShowScrollbarsPrefChanged
base:internal:-FunctorTraits<pref changed observer=

1) Update this process' NativeTheme
RenderThreadimpl::SetAlwaysShowScrollbars
ui:NativeTheme::UpdateAlwaysShowScrollbars

2) Update ScrollbarThemeSettings and page's layout:

For each page in the process*/ blink::Page::SettingsChanged (change_type = kScrollbarLayout)
Static function*/blink-:Page::OverlayScrollbarsEnabledChanged
blink::LayoutTheme::OverlayScrollbarsEnabledDidChange

On load N blink::OverlayScrollbarsEnabledChanged
ui::NafiveTheme::Update AlwaysShowScrollbarsFromPref content:‘RenderThreadlmpl:SetAlwaysShowScrollbars
BrowserView::FluentScrollbarLoadPrefs
BrowserView::BrowserView

N)X =

Outstanding issues:

1. Non-layered scrollbars don't animate since there’s no equivalent to cc::ScrollbarAnimationController in
Blink.

Potential follow-up work:

e Implement similar behavior for regular aura scrollbars: Fluent scrollbars code is mainly based on
*Aura classes (ScrollbarThemeAura, NativeThemeAura, PaintedScrollbarLayer, etc). If upstream
expresses interest in reworking the regular chromium scrollbars for them to use 9-patch and or paint on
impl thread, we could see to implement it.

	State management (Overlay Scrollbars):
	cc thread
	Main thread

	Hit testing:
	cc thread
	​Main thread

	Painting:
	Main thread painting
	cc thread painting
	Thinning animation

	Animations:
	Thumb scale factor and track opacity:
	Layer opacity:

	Testing:
	TBD - Feature exposure:
	Intention - Always show scrollbars:

	Outstanding issues:
	Potential follow-up work:

