
شنغل و قدرة قوة- Travail et puissance d'une force

1- مفهوم شغل قوة: Www.AdrarPhysic.Com

بالنسبة لانتقال لا يتجاوز بعض الكيلومترات (قريبا من

سطح الأرض) يمكن اعتبار الوزن قوة ثابتة

نقول إن قوة مطبقة على جسم ما تشتغل إذا انتقلت نقطة تأثيرها ، و غيرت حركة هذا الجسم (تغير ارتفاعه ، أو تغير سرعته). أو تغير خصائصه الفيزيائية (تغير درجة حرارته أو تشوهه).

رمز الشغل هو W و وحدته في النظام العالمي للوحدات (SI) هي : الجول (Joule) رمزها (J)

2- شغل و قدرة قوة ثابتة مطبقة على جسم صلب في إزاحة:

2-1- شغل قوة ثابتة مطبقة على جسم صلب في إزاحة

نقول إن قوة F ثابتة إذا احتفظت باتجاهها و بمنحاها و بشدتها أثناء الحركة.

حالة الإزاحة المستقيمية

حالة الإزاحة المنحنية

انتقال جزئي متجهته انتقال جزئي متجهته $\delta W_i(\vec{F}) = \vec{F}.\vec{\delta l}_i$

الشغل الكلى للقوة $ar{F}$ هو مجموع الأشغال

 $\sum \delta W_i(\vec{F}) = \sum \vec{F} \cdot \vec{\delta l_i} = \vec{F} \cdot \sum \vec{\delta l_i}$

نقسم المسسار إلى أجزاء لا متناهية في الصغر نعتبرها مستقيمية, فيكون الشغل الجرزئى أثناء

المحور (O ; z) موجــه نحو الاعلـــ $W(P)_{A\rightarrow B} = m.g.(z_A - z_B)$

AB

حالة وز<u>ن</u> جسم

 Z_{B} و Z_{A} لا يرتبط شغل وزن جسم إلا بالأنسوبين للموضعين البدئى و النهائى لمركز قصور الجسم.

نستنتج بذلك أن:

إذا كانت AB متجهة انتقال (M, \overline{F}) نقطة تأثير القوة فإن شغلها أثناء هذا الانتقال هو: $W(F)_{A\to B} = F.\overrightarrow{AB}$

 $W(\vec{F})_{A\to B} = F.AB.\cos(\alpha)$

القدرة المتوسطة تساوى القدرة المتوسطة لقوة.

خارج شغل هذه القوة W و المدة الزمنية اللازمة ∆t لإنجاز هذا

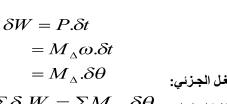
الشغل مقاوم / إذا كان $W(\vec{F}) > 0$: الشغل محرك / إذا كان $W(\vec{F}) > 0$: القوة لا تشتغل $W(\tilde{F}) < 0$ ملحوظة : / إذا كان 2-2- قدرة قوة ثابتة <u>مطبقة على جسم صلب في إزاحة</u>

القدرة اللحظية

إذا أنجزت قوة f شغلا جزئيا δW خلال مدة زمنية جد قصيرة δt فإن القدرة اللحظية لهذه

 $P = \overset{\boxtimes}{F} \cdot \frac{\overrightarrow{\delta \cdot l}}{\delta \cdot t}$ و بما أن: $\delta W = \overset{oxtimes}{F}.\overrightarrow{\delta l}$ فإن: اي $P=F.v.\coslpha$ متجهة السرعة اللحظية ننقطة تأثير القوة P=F.V

القدرة اللحظية


الشغل: وحدة القدرة في النظام العالمي للوحدات هو: الواط (Watt)

W رمزها

القدرة اللحظية للقوة : هي (M, F)

3- شغل و قدرة قوة عزمها ثابت مطبقة على جسم صلب في حركة دوران حول محور ثابت.

شغل قوة عزمها ثابت.

$$=M_\Delta.\partial heta$$
 تعبير الشغل الجزئي: $W=\Sigma \delta.W=\Sigma M_\Delta.\delta heta$ ويما أن بذلك فإن الشغل الكلي: $W=M_\Delta.\Sigma \delta heta$ $=M_\Delta.\Delta heta$

القوة عزمها ثابت فإن:

$\langle 0_1 \rightarrow 0_2 \rangle \Delta$	$P = F.V.\cos(\alpha)$
	$M_{\scriptscriptstyle \Delta}(\stackrel{\scriptscriptstyle oxed{F}}{F}) = F.r.\cos(lpha)$ و نعلم أن : $v = r.\omega$
	$v = r.\omega$
	$P={M}_{\Delta}(\stackrel{owndown}{F}).\omega$: بذلك فإن

یساوی شغل قوة عزمها M_{Λ} ثابت مطبقة علی جسم صلب فی دوران حول محور ثابت Δ , جداء عزمها و زاویة الدوران Δ :

انتهى

 $P = F.V.\cos(\alpha)$

Www.AdrarPhysic.Com