

PRD Prebid Server Price Floors
Updated Feb 20, 2025

1. Overview

1.1. Goals
1.2. Assumptions
1.3. Future Features

2. High Level Requirements
3. Floors Feature Integration Flows

3.1. Prebid.js - Scenario 1: Client-enforced Floors
3.2. Prebid.js - Scenario 2: Server-enforced Floors
3.3. Prebid SDK / AMP

4. Functional Requirements
4.1. Floor Configurations

4.1.1. Global and Account Config
4.1.2. Floor Schema Syntax

4.2. Dynamic Fetch of Floor Data
4.3. Floor Signaling

4.3.1. Schema Processing
4.3.1.1. Rules Requirements
4.3.1.2. Rule Selection Algorithm
4.3.1.3. Bidder Floor Adjustment

4.4. Bid Adapter
4.5. Enforcement

6. Prebid.js Server-to-Server Adapter
7. Interfaces

7.1. Stored Request Interface
7.1.1. Example Configuration 1

7.2. Floors Provider Interface
7.3. Bid Adapter Interface

7.3.1. Assumptions
7.3.2. The Floor Function

7.3.2.1 Example Rules file
7.3.2.2. Example getFloor 1
7.3.2.2. Example getFloor 2

7.4. Analytics Interface
7.4.1. bidRequest Object
7.4.2. bidResponse Object

7.5. Prebid SDK Interface
7.6. AMP

Change Log

1. Overview
The document describes the Price Floor feature for Prebid Server (PBS) matching many of the
Prebid.js (PBJS) features defined here. Prebid Server will contain its own set of requirements
given the additional flexibility PBS has to execute code in a server-side environment.

The workflow will remain the same in PBS as in PBJS:

1.​ Publisher signs with a Price Floor provider
2.​ Price Floor provider makes a JSON file available with the data
3.​ Publisher works with their engineering team or PBS host provider to configure price

floors

PBS Floors should support Prebid.js, Prebid AMP, and Prebid SDK integrations.

1.1. Goals
●​ Provide a Prebid server-side floor solution controlled by the publisher
●​ Allow for an open framework to set floors manually or work with a floor provider
●​ Provide a flexible framework to allow floor providers to integrate with the Floor feature

1.2. Assumptions
1.​ The Floors feature enhances the ORTB2 field imp.bidfloor so server-side bidders

immediately get smarter floors without having to update their code.
2.​ This system does not need to support arbitrary schema fields like PBJS does. Any newly

required fields will be added as enhancements in a future project.
3.​ When validating floor configurations, the general strategy is to allow the auction to

happen even if floors cannot be processed:
a.​ If there's a problem at PBS startup, log a nice error and don't let the server start.
b.​ If there's a problem with account floor configuration, log a warning and

process the auction normally.
c.​ If there's a problem with dynamically-fetched floor rule syntax, log a warning,

reject the update, relying on the previously cached rules until a valid fetch is
made.

d.​ If there's a problem with request-based floor rule syntax, whether with the
overall JSON structure of the schema or internal to a rule, reject the block and
add a warning to debug mode.

https://docs.prebid.org/dev-docs/modules/floors.html

e.​ If there's a currency conversion problem, no module floor activity can take place.
Use the default request floor if available. Emit a debug warning and log an error
at N% sampling.

4.​ We will define the ORTB2 extensions in camel-case. This differs from our normal
convention of lower-case, but this is an existing format, and it would be difficult to force
Floors providers to produce different files for PBJS and PBS.

5.​ Floor currency matters only to the Floor system. It's possible that the ad server currency,
the bid currency, and the floor currency are all different, but PBS-core currency
processing does not need to take floor currency into account.

6.​ The high-performance auction threads will never interact directly with the dynamic fetch
thread. This implies that the fetch thread configuration cannot be changed with the
regular account-config that flows through the auction workflow. Rather, changes to the
behavior of the dynamic fetch will be done with host-level config and/or a new config
mechanism.

7.​ Floors should be enforced even on test requests. Getting test bids could be combined
with the 'enforcePBS' flag to control whether PBS is rejecting bids for floor reasons.

8.​ The publisher must be able to set a minimum floor.
9.​ The following fields are added to the PBJS Floors 'Schema 2':

a.​ floorMinCur
b.​ enforceRate
c.​ enabled
d.​ fetchStatus
e.​ skipped
f.​ location

10.​The following fields in PBJS Floors 'Schema 2' are ignored in Prebid Server:
a.​ endpoint

1.3. Future Features
1.​ Detailed floor min feature
2.​ It's expected that someday we'll generalize some of these features into services that

modules could use. For example, Real Time Data providers will need a 'fetch thread'
quite similar to the one used by this feature.

3.​ We could someday add additional dynamic floor dimensions like 'previous bids in a
pageview' or 'session depth'.

2. High Level Requirements

1.​ The attributes used to determine the price floor must be flexible. e.g. one floor provider
may determine a specific floor value with a combination of domain and media type, while
another provider may utilize a different schema​

2.​ Floors data should be retrieved from a resolved OpenRTB request or via a dynamic fetch
from a floors provider.

a.​ The schema of attributes used for choosing the price floor may differ in these
sources.

b.​ The feature must validate floor rules from both sources.
c.​ Floors validation failure cannot reject the entire auction.

3.​ The Floors feature, when active, should set imp.bidfloor based on the rule that best

matches known parameters. This allows floors to be utilized by bid adapters that don't
explicitly call for custom floors.​

4.​ The PBJS will be responsible for translating schema 1 rules to the supported schema 2
of PBS.

5.​ There should be a standard method that bidders can utilize to retrieve a custom floor
from the Floors feature

6.​ The feature should adjust floors where necessary, specifically for currency conversions
and / or bid adjustments.

a.​ The system must support allowing floor providers to specify the floor currency of
their choosing

b.​ Bid adapters must be allowed to specify the floor currency for their endpoint
c.​ Bidders that require a bid adjustment would have their floor adjusted by

original_floor / bidadjustment factor. The intent here is that the bidder's floor
needs to be higher so that once their bid is adjusted down it's still above the floor.
e.g. say a given bidder's floor was $2, but the publisher lowers their bid by 0.90.
The intent is to raise the floor for this bidder to $2.22 so that once their bid is
adjusted it's still above the floor

7.​ Floor rules should be insulated from other features. i.e. adapters or modules should not

be able to detect a larger rule set than necessary
8.​ It should be possible to ease into dynamic server-side floor data, supporting analytics

that verifies how dynamic floor rules compare to static floor rules.

3. Floors Feature Integration Flows

3.1. Prebid.js - Scenario 1: Client-enforced Floors
In this baseline scenario, PBJS will retrieve the floors, passing the rules to PBS. PBJS can
optionally signal to enforce floors. For this flow, PBS-based fetching of floors has been disabled
(or no URL provided), otherwise fetch would take precedence.

Steps for flooring:

1.​ PBJS fetches a floor from Floor Provider’s endpoint
2.​ PBJS will make an OpenRTB call to PBS for an ad
3.​ PBS call bidders

a.​ Prebid Server will expose floor data to all bid adapters to read
4.​ Bidders will respond with bids
5.​ PBS will pass bids back to the caller
6.​ pbjs calls GAM with all eligible bids
7.​ GAM triggers the Prebid line item returning the PUC
8.​ PUC renders ad
9.​ PBJS sends all render data to data store to the floor provider to process

Offline Floor Data Sync:

A.​ Floor Provider reads from its data source historical bid data
B.​ Floor Provider pushes files to CDN

3.2. Prebid.js - Scenario 2: Server-enforced Floors
In this flow, PBJS will use PBS for rules fetching, signaling and enforcement(optional).
Additionally, PBS will be the only demand source for PBJS for visual representation purposes.

Steps for flooring:

1.​ PBJS will make an OpenRTB call to PBS for an ad
2.​ PBS calls bidders

a.​ Prebid Server will expose floor data to all bid adapters to read
3.​ Bidders will respond with bids
4.​ PBS will pass all bids exceeding the floor (enforcement is optional) back to the caller
5.​ PBJS calls GAM with all eligible bids
6.​ GAM triggers the Prebid line item returning the PUC
7.​ PUC or video player render ad
8.​ Optionally, PBJS or PBS sends render data to the floor provider. Some implementations

may not require detailed analytics.

Offline Floor Data Sync:

A.​ Floor Provider reads from its data source historical bid data
B.​ Floor Provider prepares floors data
C.​ Prebid Server periodically syncs floors data

3.3. Prebid SDK / AMP
The last main scenario, and the one really driving the feature for Prebid Server, is the support of
mobile apps and AMP:

Steps for flooring:

1.​ SDK makes an OpenRTB call to PBS for an ad
2.​ PBS call bidders

a.​ Prebid Server will expose floor data to all bid adapters to read
3.​ Bidders will respond with bids
4.​ PBS will pass all bids exceeding the floor back to the caller
5.​ SDK calls GAM with all eligible bids
6.​ GAM triggers Prebid line item returns PUC
7.​ PUC renders ad after fetch from PBC (not show PBC fetch)
8.​ A PBS analytics adapter sends all auction data to Floor Provider analytics endpoint

Offline Floor Data Sync:

A.​ Floor Provider reads from its data source historical bid data
B.​ Floor Provider pushes files to CDN
C.​ Prebid Server syncs floors data

AMP does not support any flooring params. These would all be in the stored request.

4. Functional Requirements
These are the general functions of the Floors feature:

1.​ Floor Configurations: Publisher works with Prebid Server host provider to configure
and enable floors for their requests.

a.​ Publisher may wish to set floors in a storedRequest, in the ortb2 request, through
a Floor Provider or all of these

2.​ Fetch Floor Data: If a Floor Provider is configured, the feature should periodically fetch
floor rules files on an account by account basis to be used for floor signaling and
enforcement

3.​ Floor Signaling: The feature should evaluate eligible rules for each auction and process
rules to determine the appropriate floor to signal to bid adapters

a.​ It's possible that bidders get unique floors due to bidCpmAdjustment
4.​ Bid Adapter Support - most adapters will just use the imp.bidfloor determined by the

feature. Advanced bid adapters may utilize a 'getFloor' function that can process more
advanced flooring rules involving mediaType and size.

5.​ Enforcement: The feature will process each bid to determine if each available bid meets
or exceeds the floor for a given auction. If enforcement is turned on, bids with a CPM
less than that floor will be rejected. Note that Deals are a special case and have their
own flag for enforcement.

6.​ Analytics - pass auction floor information through to the analytics adapters.

This diagram shows the general relationship between the various parts of the system:

4.1. Floor Configurations
This section describes the settings and configurations for the Floors feature.

4.1.1. Global and Account Config

As a general rule of thumb, auction-level flags (provided in the bid stream or set in stored
requests) should override account configurations, and global PBS config is generally used as a
default.

All fields in the following table are both global and account level. The idea is that the host
company will define a default for every field but that account-level configuration will override as
needed.

​

​

No
.

Config Field Overall
Default

Scope Definition

1 enabled true init.
dynamic

Master switch for turning off the
floors feature for this account.

2 enforce-floors-rate
(should)

100 init,
dynamic

Percent chance that PBS
should suppress any bids below
the matched floor from entering
the auction when true. This
behavior is dependent upon the
choice made for 'skipRate'. i.e.
if floors are to be skipped for an
auction, enforce-floors-rate
doesn't matter.

3 adjust-for-bid-adjustment
(must)

true init,
dynamic

Adjust floor passed to Bid
Adapters if bid adjustment is
passed to PBS and flag set is
not set to false. Flag comes in
via the top level request

4 enforce-deal-floors
(should)

false init,
dynamic

Signals to PBS to suppress deal
bids that are below the matched
floor. This would only apply if
ext.prebid.floors.enforcement.e
nforcePBS is true or not
specified.

5 use-dynamic-data
(should)

true init,
dynamic

Tells the signalling code to
ignore dynamic fetched data.
Could be used when a problem
is found or a publisher changes
their floor process.

6 fetch.enabled
(must)

false init Signals to PBS to fetch and
cache floors using the fetch
URL. Cannot be true without
fetch.url also provided.

7 fetch.url
(must)

- init String containing the URL for
PBS to fetch and cache rules
files. (this probably doesn't
make sense as a host-level

config field, but but every other
field does, so this is supported
as well.)

8 fetch.timeout-ms
(must)

3000 init Global timeout for the feature to
fetch new rules file, which is
done outside of the auction.

9 fetch.max-file-size-kb
(should)

100 init Maximum file size for fetch
rules. If the value is 0, it means
no limit.

10 fetch.max-rules
(should)

1000 init Maximum fetch rule count per
model group. If max-rules is 0, it
means there's no maximum.

11 fetch.max-age-sec
(must)

86400 init The TTL/expiration of cached
data.

12 fetch.period-sec
(must)

3600 init How often the feature should
poll for refreshed data from the
floor provider.

13 fetch.max-schema-dims
(should)

0 init Limit the number of concurrent
schema dimensions a floor
provider can include in a given
set of floor rules. A value of 0
means no maximum.

14 max-rules
(should)

100 init Limits the number of rules
processed when they come in
on the request (or in stored
requests). A value of 0 means
no maximum.

15 max-schema-dims
(should)

3 init Limit the number of concurrent
schema dimensions a request
can include in a given set of
floor rules. A value of 0 means
no maximum.

Config requirements:

1.​ At initialization, the floors config should support default account-level parameters as
noted above, with specific account overrides.

a.​ The noted overall defaults should be supported.
2.​ Errors in the initialization config should cause PBS to fail startup with reasonable error

messages. e.g. syntax error, unknown config, bad data type.

3.​ The only dynamic configuration for fetch that must be supported is the 'enabled' flag. It is
expected that floor provider configuration will not change frequently.

a.​ It would be nice for the system to be able to support fully dynamic setting of all
fetch configuration.

4.​ Errors in dynamic account configuration should cause the feature to ignore the config
entirely, fall back to the default account configuration, log a metric and log an error at
N% sampling rate.

a.​ Errors include: syntax, unknown values, data types
5.​ Value validations

a.​ enforce-floors-rate >=0 and <= 100
b.​ fetch.period-sec must be <= fetch.max-age-sec
c.​ fetch.period-sec >= 300 (cannot poll more often than every 5 min)
d.​ fetch.max-age-sec >= 600 (must allow data to be valid for at least 10 min)
e.​ fetch.max-age-sec < MAXINT
f.​ fetch.timeout-ms must be > 10 and < 10,000
g.​ fetch.max-rules >= 0 and < MAXINT
h.​ fetch.max-file-size-kb >= 0 and < MAXINT
i.​ fetch.max-schema-dims >= 0 and < 20
j.​ max-rules >= 0 and < MAXINT
k.​ max-schema-dims >= 0 and < 20

6.​ Validation configuration - in order to better support the test environment, it would ideal if
the system would allow for configuration of the following validation parameters at the
global level:

a.​ fetch.min-period-sec - can be set as low as 1 sec for testing purposes. Defaults
to 300.

b.​ fetch.min-max-age-sec: can be set as low as 1 sec for testing purposes. Defaults
to 600. Note: this name seems confusing, but it's correct. It's the minimum (max
age) that the floors provider is allowed to supply.

c.​ fetch.min-timeout-ms: can be set as low as 1 sec for testing purposes. Defaults to
10.

d.​ fetch.max-timeout-ms: Defaults to 10,000.

Here's a proposed initialization config:

settings: ​
 default-account-config: >​
 {
 "auction": {
 "price-floors": {
 "enabled": true,
 "fetch": {
 "enabled": false, // cannot be true as a default
 // (needs account-specific url)
 "timeout-ms": 5000, // ms
 "max-rules": 0, // no max
 "max-file-size-kb": 200, // KB
 "max-age-sec": 86400, // 1 day

 "period-sec": 3600, // 1 hour
 "max-schema-dims": 5 // no more than 5 dimensions
 },
 "enforce-floors-rate": 100,
 "adjust-for-bid-adjustment": true,
 "enforce-deal-floors": true,
 "use-dynamic-data": true,
 "max-rules": 100,
 "max-schema-dims": 3
 }
 }
 }

price-floors:
 enabled: true

It would be ideal for the floors feature to immediately fetch the defined URLs upon PBS startup,
but this can come as a later improvement

Here's a proposed dynamic account-level config in DB or file:

{
 "auction": {
 "price-floors": {
 "use-dynamic-data": true,
 "enforce-floors-rate": 100,
 "adjust-for-bid-adjustment": true,
 "enforce-deal-floors": true
 }
 }
}

4.1.2. Floor Schema Syntax
The supported fields for the PBS floor schema is equivalent to the PBJS version 2 schema
syntax that can be set in a resolved stored request or through a Floor Provider. See
https://docs.prebid.org/dev-docs/modules/floors.html#schema-2 . Each key is stored in
ext.prebid.floors.

Note: floors provider services are assumed to supply only the "data" portion of the schema.

For example:

https://docs.prebid.org/dev-docs/modules/floors.html#schema-2

pbjs.setConfig({
 floors: {
 enforcement: { ... },
 ...
 data: {
​ "currency": "EUR",
​ "skipRate": 20,
​ "floorsSchemaVersion":2,
 ...
 }
 }
});

Would be sent to Prebid Server (or in a stored request) as:

ext.prebid.floors: {
 enforcement: { ... },
 ...
 data: {
​ "currency": "EUR",
​ "skipRate": 20,
​ "floorsSchemaVersion":2,
 ...
 }

}

These are the assumptions this PRD makes about the Prebid Floors schema v2:

1.​ Floors providers must supply the modelGroup array
2.​ The following fields in 'data' may be used as defaults by modelGroups: currency and

skipRate

4.2. Dynamic Fetch of Floor Data
This section will cover the behavior of the Floors feature fetch, used to retrieve Floor Provider
rules files. See the configuration section above for config details.

1.​ Upon system startup, PBS should invoke the Floors feature with configuration that
enables it to immediately begin filling the floors cache for each configured account.​

2.​ The Floors feature must periodically fetch rules for each account when these conditions
are true for an account:

a.​ account auction.price-floors.enabled is true
b.​ ext.prebid.floors.enabled is true if specified

c.​ fetch.enabled is true
d.​ fetch.url is configured​

3.​ The fetch mechanism must support the HTTP GET method to retrieve floors.​

4.​ Floor provider URLs are expected to return valid JSON in the PBS floors schema as

defined in the "version 2 schema for PBJS". Note that floor provider responses are
always considered to be under the 'data' object as noted in req 10 below.
https://docs.prebid.org/dev-docs/modules/floors.html#schema-2

a.​ The fetch should be made every fetch.period-sec, even if the past fetch failed.
b.​ The JSON response must pass all validations.

i.​ Validations
1.​ HTTP request succeeds with HTTP code 200
2.​ valid JSON
3.​ at least one model
4.​ at least one rule
5.​ Overall size of the file is less than fetch.max-file-size-kb
6.​ No modelGroup should have more than fetch.max-rules
7.​ Fetch request exceeds fetch.timeout-ms
8.​ If any modelGroup[].modelWeight field is present, then it must be

an integer greater than or equal 1 and less than or equal to 100.
9.​ If any skipRate field is present, then it must be an integer greater

than or equal 0 and less than or equal to 100
10.​If any modelGroup[].default field is present, then it must be a float

greater than or equal to 0.
11.​If the floorMin field is present, then it must be a float greater than

or equal 0.
12.​No modelGroup should have more schema dimensions than

defined in fetch.max-schema-dims.
13.​If useFetchDataRate is present, it must be an integer between 0

and 100 inclusive. The default value is 100.
ii.​ Validation exceptions

1.​ unknown attributes will be ignored
2.​ duplicate attributes will use the second value

iii.​ The feature must not replace a previously good schema in the cache,
instead rejecting the invalid update.

iv.​ A metric should be logged: price-floors.fetch.failure
v.​ An error log entry should be made that includes the fetch.url and a

general description of the validation issue.
1.​ The intention is that the Prebid Server host company can set up

operational alerts so they can work with the floors provider to
resolve the issue.​

5.​ The Floors feature must cache successful and valid fetched results to be used for fast
retrieval at auction run-time

a.​ Updating cache data must be done atomically in a thread-safe way since
requests may be consuming previously cached data.

b.​ PBS should cache each account’s rules file up to the period defined by the
max-age HTTP header of the floor provider response JSON.

i.​ Validations on the max-age header: must be greater than
fetch.min-max-age-sec. Must be greater than fetch.period-sec. Must be
less than MAXINT.

ii.​ If the header fails the validation, ignore it.
iii.​ Note that the cache-control header may contain other controls, e.g.

"no-cache, no-store, max-age=0, must-revalidate". The only entry in the
header relevant to floors is max-age. All other entries are ignored.

c.​ If no max-age HTTP header is set, use fetch.max-age-sec defined by account
config or 86400 sec as an overall default.

i.​ fetch.max-age-sec config is in seconds. It must be a positive integer
greater than 0.

1.​ If it's invalid in startup config, PBS should fail to start with a
reasonable warning.

2.​ If it's invalid in account config, log a warning and fall back to the
24-hour overall default

d.​ Once max-age is reached, the system may clear that cache entry in a
thread-safe way.

i.​ An error log entry should be made that includes fetch.url and a general
description of the validation issue.

1.​ The intention is that the Prebid Server host company can set up
operational alerts so they can work with the floors provider to
resolve the issue.

ii.​ This requirements document does not define whether the cache aging
happens at read-time or in a separate thread.

6.​ Requirements for the fetch.enabled config:

a.​ The fetch.enabled flag is a host provider configuration. It allows the host to
temporarily turn off the periodic floor data fetch without losing the rest of the data
like the fetch.url.

b.​ Even if the fetch.enabled flag is toggled to false, the feature should continue to
hold onto previously fetched rules files until they expire.

c.​ If the fetch.enabled flag is toggled to true but no fetch.url is available, it's an error.​

7.​ Requirements for the fetch.url config
a.​ Only one fetch.url must be configured at a time for each account
b.​ Each account must support its own fetch.url
c.​ No specific URL validation is required. If the HTTP request fails for any reason,

see the requirement above about validation.

d.​ It's fine for the system to attempt to retrieve the bad URL every fetch.period.

8.​ Requirements for the fetch.max-file-size-kb config
a.​ A value of 0 is possible, which means no maximum size.​

9.​ Requirements for the fetch.max-rules config

a.​ Rule count should be the max count of rules for a modelGroup. No modelGroup
should have more than maxFetchRules. This is to protect the host provider on
modelGroups being too large to store in memory.

b.​ If a fetched rule exceeds the maxFetchRules count, do not cache rules and log a
warning

c.​ The default maxFetchRules value is 0, which indicates there's no max rule count.

10.​When data is retrieved from a dynamic fetch, it must be assumed to be entirely under the
'data' element of Schema 2. As described in the signaling section below, fetch data will
be merged into the floors request config under 'data' before validating. The idea is that
the request/storedrequest will define some pieces of the overall floor config (e.g.
floorMin, enabled) and the floor provider supplies the actual floor rules under the 'data'
section.

11.​Requirements for the fetch.max-schema-dims config:

a.​ No modelGroup can have more than this number of dimensions. This is to protect
the host provider on modelGroups being too large to store in memory.

b.​ If a fetched file exceeds this count, do not cache the data set, and log a warning
c.​ The default fetch.max-schema-dims value is 0, which indicates there's no max

rule count.

4.3. Floor Signaling
This section will cover the inbound request and bid adapter flow, including how the Floors
feature should handle the ingestion of rules to be used for signaling to bid adapters as well the
recording of inbound rule results to the bid request object for analytics.

At a high level, this activity takes place after the auction ortb has been resolved:

-​ make sure floors are enabled for Prebid Server, the account, and the request. If any of
them are disabled, skip signaling.

-​ determine which floor data to use
-​ determine which floor model to use
-​ overwrite the request ext.prebid.floors with the specific source and model being used

so downstream entities all use the same data and model
-​ process floor rules
-​ update imp[].bidfloor/cur with the appropriate value

-​ update imp[].ext.prebid.floors with impression-specific values: the floorRule and
floorRuleValue used to set the imp.bidfloor

-​ for adjusted bidders, update imp[].bidfloor/cur with the appropriate value

Requirements

1.​ Determine whether the floors feature is enabled for Prebid Server, account, and request.
If not, no signaling is done. Verify that both account enabled is true and
ext.prebid.floors.enabled is not false.

2.​ The Floors feature must determine at runtime the location of floor data to use, either
resolved in the bid request to PBS or via fetch from a floors provider using the following
priority: dynamic data from fetch (after considering useFetchDataRate) > ortb2 request
(ext.prebid.floors) > imp.bidfloor > no floor as described below

a.​ Dynamically fetched floors should take first priority over floors resolved in the
request to PBS.

i.​ As noted in the dynamic fetch section above, data from floors providers is
always considered part of the 'data' section of Schema 2.

ii.​ If data.useFetchDataRate is supplied in the dynamic data, is an integer,
and is less than 100, choose a random number from 0-100. If that number
is greater or equal to data.useFetchDataRate, then skip the dynamically
fetched floor data. Make sure ext.prebid.floors.location reflects that
dynamic data is not being used. This supports a use case where a floors
provider has been asked to prove their data is better than static data.

b.​ If no valid fetched data is found or data.useFetchDataRate skipped dynamic
data, the Floors feature should look for floors in the resolved request

i.​ The feature will only see the results of the merging of ext.prebid.floors,
so will not know whether this value came from the original request or a
stored request.

ii.​ PBS-core will use ext.prebid.floors from the original request over any
value from the stored request.

iii.​ Validation on ext.prebid.floors should be done the same as 4.2.3.b for
dynamic fetches.

1.​ If an error is found during validation, and 'test' mode is off, place
an error message in the response noting "Error in request floors
data: Invalid modelWeight."

2.​ Also, log validation error at N%.
3.​ Floor processing can proceed with any supplied imp.bidfloor.

c.​ If neither valid fetched floors or ext.prebid.floors exist, the feature does nothing
for signaling or enforcement -- just pass "location: noData" to analytics adapters.

3.​ Once the location of which floor data to use is determined, the Floors feature should
evaluate the skipRate from that floor data set. skipRate determines if the Floors feature
should signal and enforce floors.

a.​ skipRate can be declared within floors.data.modelGroups object
i.​ If skipRate is supplied in both the floors.data object and within the

floors.data.modelGroups array, the skipRate configuration within the
floors.data.modelGroups array prevails

b.​ skipRate must be an integer whose values should be between 0 and 100
inclusive

c.​ skipRate should default to 0 if no value is supplied
d.​ If a valid skipRate is supplied, the Floors feature should randomly skip floor

usage by the rate provided in the derived skipRate field
i.​ all imp objects in the auction are treated the same. i.e. the system should

not pick different random numbers for different imps.
ii.​ If floors are to be skipped:

1.​ imp.bidfloor and imp.bidfloorcur will be left as they were originally
2.​ The Floors feature should still signal to Analytics providers with

data from the auction. See the analytics section below.
3.​ No enforcement of bid responses takes place.

4.​ Assuming floors are active, the Floors feature must determine which model should be

used based on the weight supplied in the ruleset:
a.​ A single model is selected and applied to the whole auction (e.g. all imp objects)
b.​ The floor provider is expected to provide model weights as a positive integer

value
i.​ If no modelWeight is provided, assume the weight is 1.
ii.​ If specified, modelWeight must be an integer and > 0 and <= 100

1.​ If specified and invalid, the entire ruleset should be rejected as
noted above.

iii.​ The system should divide the weights proportionally when choosing which
model to use.​

5.​ After all the previous conditions are met (floors are not disabled, floor location
determined with valid data and skipRate is false) the Floors feature should remove
non-selected models before updating ext.prebid.floors in the resolved bid request object.​

6.​ The system must be designed so that newly fetched floor data does not overwrite the
floor data resolved for an auction in-progress.

7.​ Field exceptions. The following fields from the original request (or stored request) must

take precedence over any data from a dynamic fetch:
a.​ floorMin - this is the publisher control to make sure that the floor provider is within

acceptable bounds.
b.​ floorMinCur

8.​ Schema version validation. The feature should validate that if defined,

floorsSchemaVersion is 2. This field may be missing, and if so, it's assumed that it will
conform to schema 2. Unknown fields may be ignored.

9.​ Analytics adapters and other downstream entities depend on the signaling component to

set the following data:
a.​ ext.prebid.floors.data.modelGroups[0] - this is the only entry of the original

modelGroups array that should be seen by downstream code. It's the model
group chosen based on weight.

b.​ ext.prebid.floors.floorProvider - if ext.prebid.floors.data.floorProvider is set,
copy it here. Otherwise, leave it to the original value.

c.​ ext.prebid.floors.skiprate - this is set from the first available of:
i.​ ext.prebid.floors.data.modelGroups[CHOSEN].skiprate
ii.​ ext.prebid.floors.data.skiprate
iii.​ otherwise leave it as the original value

d.​ ext.prebid.floors.floorMin - not set by signaling. Takes whatever value comes in
on the original floors data

e.​ imp[].ext.prebid.floors.floorMin - not set by signaling. Takes whatever value
comes in on the original request

f.​ ext.prebid.floors.data.modelTimestamp - not set by signaling. Takes whatever
value comes in on the original floors data

g.​ ext.prebid.floors.enabled - boolean set to whether the entire floors feature
(signaling and enforcement) is enabled for this request

h.​ ext.prebid.floors.fetchStatus (*) - The last fetch status for this account. Valid
values are: 'none' (when dynamic fetch is not enabled for the account), ‘success’
(when fetch returned an http 200 status), ‘timeout’ (when fetch results not
returned before either auction delay or prebid timeout) ‘error’ (any http status
other than 200 or other error condition), or 'inprogress' (when no valid fetch data
is present but the request is outstanding)

i.​ ext.prebid.floors.skipped (*) - Whether the skipRate resolved to be true or false
j.​ ext.prebid.floors.location (*) - Where the module derived the rule set. Values

are one of 'request’, ‘fetch’ or ‘noData’. If the module code is invoked and no
floors object is able to be found (either by error or other condition) the
floorsModule will set location to ‘noData’.

Note that the fields flagged by a (*) are output fields only: they are intended for use by analytics
adapters and other downstream modules. They are not defined as Schema v2 input fields.

4.3.1. Schema Processing

4.3.1.1. Rules Requirements​

1.​ Each key in data.modelGroups[].values is considered a rule within a set of one or more
modelGroups, where the key is a set of targetable attributes and the value is the CPM
floor

a.​ Keys must be string values, otherwise reject the rule.
b.​ CPM must be a float value, otherwise reject the rule.
c.​ Rule fields are case insensitive
d.​ In both rule selection and enforcement, all fields and values should be treated as

lower case​

2.​ The Floors feature should split each rule using the applied delimiter (default to “|” if none
supplied), to match 1:1 for each data.modelGroups[].schema.fields string supplied in the
order provided in the fields object

a.​ If the total number of split entries in a given rule does not match the number of
fields, ignore the rule and log a warning

b.​ The request-level max-rules config cannot come in on the request - it must be
specified as part of the account config, i.e. ignore ext.prebid.floors.max-rules. If
there are more rules than allowed, stop processing and emit a warning to the
debug output. This helps prevent host companies from dealing with accidental or
malicious rule counts. A value of 0 indicates no limit.

c.​ The request-level max-schema-dims config cannot come in on the request - it
must be specified as part of the account config, i.e. ignore
ext.prebid.floors.max-schema-dims. If there are more dimensions than allowed,
stop processing and emit a warning to the debug output. This helps prevent host
companies from dealing with accidental or malicious floors config. A value of 0
indicates no limit.

d.​ A given rule can have one or more attributes within values that can be a “*” to
signify any (or catch-all) for that specific field​

3.​ The Floors feature must support a pre-defined set of schema fields defined in the
data.modelGroups[].schema.fields object that correspond to the
data.modelGroups[].values objects. Below are the fields and their corresponding values:

Rules Dimensions Table

Dimension Type Example How the Floors Feature and the getFloor
function Resolve

siteDomain string level4.level3.example
.com

Compare to site.domain or app.domain

pubDomain string example.com Compare to site.publisher.domain or
app.publisher.domain

domain string example.com Compare to (site.domain and
site.publisher.domain) or (app.domain and
app.publisher.domain). If any of them match
this part of the rule matches.

bundle string org.prebid.drprebid app.bundle

channel string pbjs, amp ext.prebid.channel.name

mediaType string banner set to "*": if more than one of these:
imp.banner, imp.video, imp.native,
imp.audio

banner: true if imp.banner exists

video-outstream: true if imp.video exists
and imp.video.placement is not 1

video-instream: true if imp.video exists and
imp.video placement exists and is 1

video: an alias for video-instream

native: true if imp.native exists

audio: true if imp.audio exists

size string 300x250 if mediaType banner and only one size
exists in imp.banner.format, then match
against imp.banner.format[0].w and
imp.banner.format[0].h

if mediaType banner and there's no
imp.banner.format, then use imp.banner.w
and imp.banner.h

if mediaType video, use imp.video.w and
imp.video.h

Otherwise size only matches the * condition

gptSlot string /1111/adslot if imp.ext.data.adserver.name=="gam" then
compare against
imp.ext.data.adserver.adslot

otherwise also compare against
imp.ext.data.pbadslot

pbAdSlot string /1111/homepage#div1 imp.ext.data.pbadslot

adUnitCode string /1111/homepage#div1 1) imp.ext.gpid
2) imp.tagid
3) imp.ext.data.pbadslot​
4) imp.ext.prebid.storedrequest.id

country string usa compare against device.geo.country
(ISO-3166-1-alpha-3)

deviceType string desktop, phone,
tablet

if device.ua is not present, only rules
specifying a wildcard deviceType will match.
In other words, there's no default value
unless device.ua exists.

if device.ua is present, resolve deviceType
to:

'phone' if UA matches one of these
patterns: "Phone", "iPhone",
"Android.*Mobile", "Mobile.*Android"

else 'tablet' if UA matches one of these:
"tablet", "iPad", "Windows NT.*touch",
"touch.*Windows NT", "Android"

else 'desktop'

The last column in this table is used in two places:

1.​ When the feature is determining the imp.bidfloor for each imp in the request, it could just
call getFloor() which uses these values as defaults.

2.​ When a bid adapter calls getFloor() without specifying a value, the function will use these
values as defaults

4. If a rules file contains an unrecognized dimension in the schema, the rules file should be
considered invalid.

4.3.1.2. Rule Selection Algorithm
See https://docs.prebid.org/dev-docs/modules/floors.html#rule-selection-process

1.​ After a rule (and thus floor value) is selected for each imp, the Floors feature must
validate the chosen floorRuleValue against any provided floorMin:

a.​ Look for a floorMin. First check for imp[].ext.prebid.floors.floorMin. If that doesn't
exist, check ext.prebid.floors.floorMin.

b.​ If a floorMin was found, next, find the floorMin currency: First check for
imp[].ext.prebid.floors.floorMinCur. If that doesn't exist, check for

https://docs.prebid.org/dev-docs/modules/floors.html#rule-selection-process

ext.prebid.floors.floorMinCur. If that doesn't exist, check the floors data for
data.currency or data.modelGroups[].currency

i.​ If both imp[].ext.prebid.floors.floorMinCur and
ext.prebid.floors.floorMinCur exist and they're different, emit a warning in
debug mode.

c.​ If the floorMinCur is different from the floor currency, convert the floorMin value.
d.​ If a currency conversion is required but not available, the system should not

override imp.bidfloor. It should log a warning in debug mode and to the error log
at N% sampling.

e.​ If the floorRuleValue is less than the floorMin, then floorValue is set to the
converted floorMin. Else floorValue is set to floorRuleValue.

f.​ Floor values should be rounded to 4 digits of precision.
2.​ Overwrite the relevant imp.bidfloor with floorValue and imp.bidfloorcur with the

floorProvider's currency. Note: the original imp.bidfloor is a default, not a min. So if a rule
matched, it might overwrite the original imp.bidfloor value with a lower value.

3.​ If no rule matched, the original imp.bidfloor and imp.bidfloorcur must remain untouched.
4.​ There's no floorMin check if no floorRuleValue is chosen. The idea behind floorMin is

that it's a fence for dynamic floors. If the pub sends in a default imp.bidfloor, we can
assume it's above the floorMin

4.3.1.3. Bidder Floor Adjustment
If ext.prebid.bidadjustmentfactors is specified for any bidder, the feature must be able to adjust
the floor as seen by that bidder. There are two places where this needs to be accommodated:

-​ Updating the bidder-specific ORTB imp.bidfloor for named bidders
-​ Adjusting the output of the getFloor() function for named bidders

Requirements

1.​ If the ext.prebid.bidadjustmentfactors array contains the current bidder, the feature must
divide the floor by the adjustment value. For example, if the auction-wide floor is 1.00
USD and bidderA has an adjustment factor of 0.85. the system should update
imp.bidfloor as seen by that adapter to 1.1765.

a.​ If mediatype level adjustments are defined and the impression defines more than
one mediatype, choose the most aggressive adjustment, i.e. the lowest one.

2.​ Likewise, if ext.prebid.bidadjustments contains the current bidder, the feature must get
the relevant adjustment array and can walk the adjustments backwards.

a.​ If mediatype level adjustments are defined and the impression defines more than
one mediatype, choose the most aggressive adjustment, i.e. the lowest one.

3.​ The floor function should be able to recognize which bidder is calling it and similarly
adjust the floor provided to that bidder.

4.4. Bid Adapter
See section 7.3, the bid adapter interface.

4.5. Enforcement
Note: The floor enforcement options supported by PBS are the same as defined in Schema 2
for Prebid.js with one exception: PBS adds the "enforceRate" option, which corresponds to the
'enforce-floors-rate' configuration option.

1.​ The price floor must be enforced before pricegranularity rounding occurs but after
regular bidresponse-to-requested-currency conversion.​

2.​ The system must determine whether to enforce floors by considering all of these factors.
If all of them are true, it should enforce the bid:

a.​ If the account config enabled flag is true
b.​ If request ext.prebid.floors.enabled is defined and true. If not defined by the

request, the default is true.
c.​ If ext.prebid.floors.enforcement.enforcePBS is not defined or if

ext.prebid.floors.enforcement.enforcePBS is defined and true
i.​ This field is used as a flag from Prebid.js telling PBS that the client-side

floors module is in effect.
d.​ If the bid response contains a seatbid.bid.dealid and (enforce-deal-floors config

is set to true and ext.prebid.floors.enforcement.floorDeals is true)
e.​ If both account.auction.price-floors.enforce-floors-rate and

request.ext.prebid.floors.enforcement.enforceRate are satisfied​

3.​ If enforcement is to take place, the Floors feature must compare the bid against the
appropriate floor for the specific bid after normalizing for currency.

a.​ If currency cannot be normalized, no floor enforcement can take place. Log a
warning in debug mode and to the error log at N% sampling.

b.​ Bid adapters may have utilized floors more sophisticated than simply imp.bidfloor
– they may have called the getFloors() function to get a specific rule combination.
The enforcement component must be able to enforce against the floors ruleset,
not just the possibly over-simplified imp.bidfloor.

c.​ If bid is below the floor
i.​ mark the bid as bidRejected and suppress it from auction.

1.​ It should not be cached in PBC or present in the client response.
ii.​ create a record for analytics adapters to be aware of this rejection and

reason.
iii.​ Log a warning in debug mode and to the error log at N% sampling. The

system should use a specific error code for this log entry.
d.​ If the bid meets or exceeds the floor, it is not modified​

4.​ If multi-bid is enabled, each bid should be enforced independently.

5.​ Requirements for enforce-floors-rate config:
d.​ When specified and valid, for each auction request that is not skipped by the

skipRate setting, the system should pick a random number between 0 and 100. If
the number chosen is less than the enforce-floors-rate, set
ext.prebid.floors.enforcement.enforcePBS=true. Else set
ext.prebid.floors.enforcement.enforcePBS=false.

e.​ Note: imp.bidfloor on the original request is a default passed through to bidders
even if the floors feature is skipped. In this scenario, no enforcement happens if
either skipped=true OR if (skipped=false and enforce-floors-rate turns out false)

6.​ If enabled per above rules, enforcement should happen even if the PBS feature did not

add any signaling to the bidfloor/bidfloorcur already present in the request.

6. Prebid.js Server-to-Server Adapter
1.​ The PBJS pbsBidAdapter should send floor configuration data to PBS in

ext.prebid.floors.
2.​ If there are multiple models and PBJS has chosen a particular model, only that model

should be sent to PBS.
3.​ It should also resolve the client-side match into imp.bidfloor/cur as a default.
4.​ There should be an s2sConfig config value that allows the publisher to turn off floors

data, as it can be large and if PBS doesn't support floors, it would be wasted bandwidth.

If the PBS host company has set up the Floors feature it will be able to parse the data. If not, the
data will be ignored and imp.bidfloor will be passed through to the adapters.

7. Interfaces

7.1. Stored Request Interface
Stored Requests can contain ext.prebid.floors and imp[].bidfloor{cur}

7.1.1. Example Configuration 1
Floor data is configured on the top-level stored-request. A simple one modelGroup
configuration:

{
 "ext": {

 "prebid": {
 "floors": {
 "data": {
 "currency": "USD",
 "modelGroups": [
 {
 "schema": {
 "fields": [
 "gptSlot",
 "mediaType"
]
 },
 "values": {
 "*|*": 0.1,
 "/1111/homepage/left-nav|banner": 0.9,
 "/1111/homepage/top-rect|banner": 0.5,
 "/1111/homepage/top-rect|video": 5,
 "/1111/homepage/top-rect|*": 5,
 "/1111/tech/left-nav|banner": 1.5
 },
 "default": 1.0
 }
]
 }
 },
 "targeting": {
 "includebidderkeys": true,
 "includewinners": true,
 "pricegranularity": "med"
 }
 }
 }
}

7.2. Floors Provider Interface
The data format is a subset of what is supported for Prebid.js. Floor data providers endpoints
must return JSON data, and all of that data is assumed to be under the "data" field of the main
floors schema. Essentially, floors providers have a different schema.

Example response from the fetch.url:

{
 "currency": "USD",
 "modelGroups": [
 {
 "modelVersion": "new model 1.0",
 "modelWeight": 50,
 "schema": {

 "fields": [
 "country",
 "bundle",
 "mediaType",
 "size"
]
 },
 "values": {
 "*|*|*|*": 0.8,
 "*|org.prebid.mobile.demoapp|banner|*": 0.75,
 "*|org.prebid.mobile.demoapp|banner|300x50": 0.95,
 "GBR|*|video|480x600": 1.5,
 "usa|*|banner|*": 0.9,
 "usa|*|banner|300x250": 0.8,
 "usa|*|banner|300x600": 1.2
 }
 },
 {
 "modelVersion": "new model 1.0",
 "modelWeight": 50,
 "schema": {
 "fields": [
 "gptSlot",
 "mediaType"
]
 },
 "values": {
 "*|*": 0.1,
 "/1111/homepage/top-rect|banner": 0.8,
 "/1111/homepage/top-rect|video": 1.2,
 "/1111/homepage/top-rect|*": 1.2,
 "/1111/tech/left-nav|banner": 1.5
 }
 }
],
 "skipRate": 5
}

7.3. Bid Adapter Interface
While OpenRTB has a clean method to express a bidfloor and bidfloorcurrency, they exist at the
top level of the bidRequest object. There are several scenarios, including floors for multiple
sizes and / or multi-format bid requests, where more than one price floor can be matched for a
given auction.

To avoid ambiguity, Prebid.js exposes a 'getFloor()' function each bidder can utilize on every
bidrequest object, media type, and size combination with the desired currency to derive the
appropriate floor.

There are 4 scenarios that cover server-side bid adapters:

1.​ The most common scenario is expected to be bidders that just forward imp.bidfloor and
imp.bidfloorcur through to their endpoints, not supporting advanced floors.

2.​ Some bid adapters may not support floors at all, completely ignoring imp.bidfloor.
3.​ A bid adapter may support special floor logic using getFloor(). Specific examples:

a.​ if the adapter selects just one mediatype in a multi-format imp, it should call
getFloor() with the utilized mediatype.

b.​ if the adapter creates separate requests for each size in a multi-size imp, it
should call getFloor() with the relevant size.

4.​ If the bidder endpoint supports Prebid-level floor granularity (i.e. multi-format and
multi-size), the adapter can call getFloor() to parse the floor schema or it can translate
the schema in its own way.

7.3.1. Assumptions

1.​ Bid adapters should not have access to floor configuration such as skip rate, enforce
rate, etc.

7.3.2. The Floor Function

A floor function (aka "getFloor") enables Bid Adapters to retrieve a floor for each auction. Due to
the complexity of the rule system, deriving the correct floor can be a difficult task. The function
simplifies the retrieval process.

1.​ A method must be available to allow each Bid Adapter to query for special floors. Further
requirements assume this will be implemented as a "getFloor()" function, but any other
approach consistent with the requirements is acceptable.​

2.​ If a bid adapter needs special floor details, it must call the floor function on each imp
object to retrieve a floor​

3.​ The floor function should take these parameters:
a.​ biddercode: needed to handle bid adjustments
b.​ currency: the three letter currency code for the output price
c.​ bidRequest or impId: used to identify which imp object to operate on
d.​ mediaType: the provided bidRequest/impID will be scanned to get the list of

relevant mediaTypes.:
i.​ banner

ii.​ video
iii.​ video-instream
iv.​ video-outstream
v.​ native

vi.​ * // the default
e.​ size: the provided bidRequest/impID will be scanned to get the list of relevant

sizes
i.​ Array of w, h ([w, h])
ii.​ * // the default​

4.​ BidRequest/impId is the only required parameter for the floor function, all other

parameters are optional
a.​ If BidRequest/impId is not provided, do not return a floor
b.​ If only BidRequest/impId is provided, the result should be the same as

imp.bidfloor that was already set by the feature.​

5.​ MediaType or Size parameters that are not defined or are explicitly “*” will match to the
rule whose field contains a * value

6.​ If no rule matches, use a 'default' floor, else, use no floor.​

7.​ The floor function should parse the floors rules and return the following parameters:
a.​ currency: the three letter currency code the returned floor is in
b.​ floor: the CPM floor evaluated by the Floors feature
c.​ floorDetails: a block of JSON that the bid adapter will attach to the bid response

for use in analytics. It should contain:
i.​ floorRule
ii.​ floorRuleValue​

8.​ The Floors system does not need to enforce that bid adapters are implemented correctly

with respect to calling the floor function and attaching the floorDetails to the bid response
-- that will be the responsibility of the code reviewers. It is expected that only a few
bidders will make use of this advanced feature.

9.​ The floor function is expected to return only one floor per call.​

10.​The floor function should respond with a max CPM precision of 4 decimal points​

11.​The floor function should treat the OpenRTB imp.bidfloor as a floor minimum of any

selected rule floor. Note that the imp.bidfloor at this point may not be the original request
bidfloor - it may have been replaced by a rule value.

a.​ The getFloor function should take the greater of imp.bidfloor and the selected
floor data floor when signaling to bid adapters​

12.​If PBS has a bidAdjustment factor for this particular bidder
(ext.prebid.bidadjustmentfactors), the floor function must adjust the floor by the inverse
of the incoming bidAdjustmentFactor. This is an important feature - here's the
scenario:

a.​ Publisher has applied an adjustment factor on bidderA of 0.9.
b.​ The floor is 1.10.
c.​ If we allow bidderA to bid 1.00, their bid will get adjusted down to 0.90 and it will

then get thrown out due to the floor.
d.​ Therefore, the floors feature needs to apply the inverse of the adjustment and

tells bidderA the floor is 1.00/0.9=1.11 so that when they do bid, those bids will
be above the actual floor.​

13.​Similarly, if ext.prebid.bidadjustments exists, the floor function must adjust the bidder's
floor by the inverse of the incoming bidAdjustments. For example:

a.​ imp[].bidfloor: 0.98,
b.​ imp[].bidfloorcur: "USD"
c.​ "bidadjustments": {
d.​ "mediatype": {

e.​ "banner": {
f.​ "bidderA": {
g.​ "*": [{
h.​ "adjtype": "multiplier",
i.​ "value": 0.8
j.​ },{
k.​ "adjtype": "cpm",

l.​ "value": 0.18,

m.​ "currency": "USD"
n.​ }]
o.​ }
p.​ }

q.​ The resulting call to the priceFloorResolver for banner should return (0.98 + 0.18)
/ 0.8 = 1.45​

14.​The floor function should perform any currency conversion if there's a currency
difference between the rule floor and the requested currency.

15.​The floor function must respect the 'skipped' status as chosen by the Floors Signaling

component.

16.​The floor function must check whether the floors feature is enabled for this request. i.e.
the request may turn it off by setting ext.prebid.floors.enabled:false.

Example Format

getFloor({
 bidder: "bidderA",
 currency: string, //default to currency specified in data
 impId: string //Required, value consisting of the imp id to
associate to the appropriate imp object
 mediatType: string //Required,one of “banner”, “video”, “native” or *
 size : [w, h] OR ‘*’ //default size is “*”

});

The job of the floor function is:

1)​ Encapsulate full rules file by matching the auction floor rule set against attributes of the
bidRequest object

a)​ Bidders will be required to call getFloor for each mediaType, ad size and imp.id
combination or once per mediaType per imp object if they don’t support floors per
size

b)​ getFloor will return a single price floor and floor currency specific for that imp,
media type and size combination of the bidrequest object for that bidder context

2)​ Handle floor adjustments from the bidder ext.prebid.bidadjustmentfactors if relevant
3)​ Convert the currency into the desired currency using the currency conversion feature,

otherwise, return specified currency in utilized data set
a)​ If a currency conversion is not available, return to the caller with an error. They

should not set any floor at all rather than set an incorrect floor.

7.3.2.1 Example Rules file
Below is an example of valid rules for a given auction to be used in the following getFloor()
examples:

{
 "data": {
 "currency": "USD",
 "schema": {
 "fields": ["gptSlot", "mediaType", "size"]
 },
 "values": {
 "/1111/homepage/top-rect|banner|300x250" : 0.60,
 "/1111/homepage/top-rect|banner|300x600" : 1.78,
 "/1111/homepage/top-rect|banner|*" : 1.10,
 "/1111/homepage/top-rect|video|480x600" : 3.20,
 "/1111/homepage/top-leaderboard|banner|728x90" : 1.50
 },
 "default": 0.75

 }
}

7.3.2.2. Example getFloor 1
getFloor for media type Banner for a bid request in the context of the gpt slot
“/1111/homepage/top-rect” where the bid adapter does not support multiple sizes.

getFloor({
 bidder: "bidderA",
 bidRequest: object
 currency: 'USD',
 impId: “1”,
 mediatType: ‘banner’,
 size: "*"

});

Example response

{
 currency: 'USD',
 floor: 1.01,
 floorDetails: {
 floorRule: "/1111/homepage/top-rect|banner|*"
 floorRuleValue: 1.10,
 floorValue: 1.01,
 currency: 'USD'
 }

}

The bid adapter does two things with this response:

1.​ uses the 'floor' value in the call to their endpoint
2.​ attaches the 'floorDetails' object to the bidResponse object they create

7.3.2.2. Example getFloor 2
getFloor for media type Banner for a bid request in the context of the gpt slot
“/1111/homepage/top-rect” with size of 300x600 where the bid adapter does support multiple
sizes.

getFloor({
 bidder: "bidderA",

 currency: 'USD',
 impId: “1”,
 mediaType: ‘banner’,
 size: [300, 600]

});

Response

{
 currency: 'USD',
 floor: 1.78,
 floorDetails: {
 floorRule: "/1111/homepage/top-rect|banner|300x600",
 floorRuleValue: 1.78,
 floorValue: 1.78,
 currency: 'USD'
 }

}

The bid adapter does two things with this response:

1.​ uses the 'floor' value in the call to their endpoint
2.​ attaches the 'floorDetails' object to the bidResponse object they create

7.4. Analytics Interface
Price Floors providers will rely heavily on the associated Prebid analytics feature in order to
make the most informed price floor rule decisions. Because of this, the price floors feature
needs to relay important information about the flooring and decisions made in the lifecycle of an
auction.

The price floors feature will do this by leveraging the already existing implementation for Prebid
analytics by exposing information onto the bidRequest, bidResponse, and possibly analytics
tags objects. Thus, when an analytics adapter hooks into these Prebid events, it will be able to
pick out the price floors data and pass it along to their servers.

7.4.1. bidRequest Object
Bid Requests objects contain all floors data. It may be used by bidder adapters and analytics
adapters as needed.

Parameter Type Description

imp.bidfloor float The floor defined by the feature for bidders that just
look here.

imp.bidfloorcur string Currency of the imp.bidfloor.

If the floors feature is disabled, then this value is
whatever was set on the original request.

If enabled, then this value is whatever currency is
defined in the chosen rule: the fetch file or the
incoming floor data.

imp.ext.prebid.floor
s

 Impression-level Floor values set by the Floors
feature. This block will be empty if no valid rule set
was found.

 floorRule string The specific rule that set the imp.bidfloor. (e.g.
"/1111/homepage|*". This will be empty when the
skipRate feature fires.

 floorRuleValue float The value of the rule. Could differ from imp.bidfloor
based on bid adjustments or the floorMin setting.
This will be empty when the skipRate feature fires.

 floorValue float This is the final imp.bidfloor for the specific bidder.
which is the max of (floorRuleValue, orig
imp.bidfloor, ext.prebid.floors.floorMin, and
imp[].ext.prebid.floors.floorMin)

Note: the currency here is the same as
imp.bidfloorcur.

 floorMin float the lowest value floor the publisher will allow for
this ad unit

 floorMinCur string the currency in which the lowest floor is specified

ext.prebid.floors Auction-level floors values. This block comes from
the source of floors data: dynamic fetch, stored
request, or original ortb2 request. It may be
enhanced by the Floors feature.

 enabled boolean Turn off the server-side floors feature. Defaults to
'true'. If the feature is disabled, all functionality in
the feature should be turned off. This is intended
only to be set by the request in emergency
situations where the account config cannot be
updated.

 fetchStatus string The last fetch status for this account. Valid values
are: 'none' (when dynamic fetch is not enabled for

the account), ‘success’ (when fetch returned an
http 200 status), ‘timeout’ (when fetch results not
returned before either auction delay or prebid
timeout) ‘error’ (any http status other than 200 or
other error condition), or 'inprogress' (when no
valid fetch data is present but the request is
outstanding)

 location string Where the module derived the rule set. Values are
one of 'request’, ‘fetch’ or ‘noData’. If the module
code is invoked and no floors object is able to be
found (either by error or other condition) the
floorsModule will set location to ‘noData’.

 skipped boolean Whether the skipRate resolved to be true or false

 floorMinCur string Defines the currency of the floorMin as defined by
the publisher. Defaults to the currency of the floors
provider (data.currency). Note: this is an addition to
the PBS implementation and will eventually be
added to the PBJS module.

ALL FIELDS IN
SCHEMA 2

 See
https://docs.prebid.org/dev-docs/modules/floors.ht
ml#schema-2

There are several fields in the PBJS schema 2 that are NOT recognized by Prebid Server.
These fields are ignored:

-​ endpoint.url
-​ enforcement.enforceJS

7.4.2. bidResponse Object
Most floor data is common across all bidders and bid responses for a given imp. There are
several cases where bidder-response-level data is needed:

-​ when the Floors feature determines that it needs to remove a bid response for
enforcement reasons

-​ when a bidder's floor was adjusted due to bidAdjustmentFactor
-​ when a bidder uses 'getFloor' logic to determine a custom floor

When a bid response is being processed it is important for analytics adapters to know the
decision which was made and the context of the rule selection. Here is the floor data that needs
to be attached to each bidResponse:

Parameter Type Description

https://docs.prebid.org/dev-docs/modules/floors.html#schema-2
https://docs.prebid.org/dev-docs/modules/floors.html#schema-2

bidAdjustment boolean Used to record if the bid floor was CPM adjusted
based on the bidAdjustmentFactor provided in the
bidRequest

floorCurrency string Currency of the floor matched. Only specified if the
bidder calls getFloor.

floorRule string The matching rule for the given bidResponse. Only
needed if the bidder calls getFloor().

floorRuleValue float Rule floor selected. This is to differentiate between
the floor bound to the selected rule and the OpenRTB
bidfloor (if available). Only needed if the bidder calls
getFloor().

floorValue float The value of the floor enforced for this bidder. This will
be the greater of the OpenRTB bidfloor and
floorRuleValue. Only needed if the bidder calls
getFloor or if the floor was adjusted due to
bidCpmAdjustments.

It must be possible to determine how to communicate that a bid response has been rejected
due to floors. If the existing PBS BidResponse object cannot be used, the system could make
use of the Modularity system's Analytics Tags field.

7.5. Prebid SDK Interface
Given the static nature of apps, setting floors at the SDK level would be a difficult task. For this
reason, floors for Prebid SDK traffic should be set using floor providers (fetch) or in stored
requests.

7.6. AMP
Similar to Prebid SDK traffic, passing floors real-time for AMP traffic can be a challenge. Floors
in this mode should be also set using floor providers (fetch) or in stored requests.

Change Log

Date Change Person

June 30, 2022 Added support for imp-level floorMin bretg

July 12, 2022 Added adUnitCode targeting dimension bretg

July 25, 2022 Updated imp-level floorMinCur default in
4.3.1.2.1

bretg

July 27, 2022 Refined imp-level floorMinCur default in
4.3.1.2.1

bretg

Aug 3, 2022 Added imp.tagid to the adUnitCode
targeting dimension resolution

bretg

Sept 12, 2022 Made it explicit that skipped: true also
means that enforcement doesn't happen.

bretg

Dec 9, 2022 Addressed clarification questions. bretg

Mar 20, 2023 Added fetch.max-schema-dims and
request-level max-rules and
max-schema-dims

bretg

Mar 22, 2023 Added floorMin, floorMinCur to the analytics
table

bretg

May 10, 2023 Added fetch.use-data-rate feature. Added
description of why bidadjustments affect
floors.

bretg

June 12, 2023 Dropped mention of the floorMinCur default
from the field exception requirement

bretg

June 15, 2023 Changed fetch.use-data-rate to
data.useFetchDataRate

bretg

Feb 20, 2025 Added the new bidadjustments feature, as
distinct from the older bidadjustmentfactors
feature.

bretg

	PRD Prebid Server Price Floors
	1. Overview
	1.1. Goals
	1.2. Assumptions
	1.3. Future Features

	2. High Level Requirements
	3. Floors Feature Integration Flows
	3.1. Prebid.js - Scenario 1: Client-enforced Floors
	3.2. Prebid.js - Scenario 2: Server-enforced Floors
	3.3. Prebid SDK / AMP

	4. Functional Requirements
	4.1. Floor Configurations
	4.1.1. Global and Account Config
	4.1.2. Floor Schema Syntax

	4.2. Dynamic Fetch of Floor Data
	4.3. Floor Signaling
	4.3.1. Schema Processing
	4.3.1.1. Rules Requirements​
	4.3.1.2. Rule Selection Algorithm
	4.3.1.3. Bidder Floor Adjustment

	4.4. Bid Adapter
	4.5. Enforcement

	6. Prebid.js Server-to-Server Adapter
	7. Interfaces
	7.1. Stored Request Interface
	7.1.1. Example Configuration 1

	7.2. Floors Provider Interface
	7.3. Bid Adapter Interface
	7.3.1. Assumptions
	7.3.2. The Floor Function
	7.3.2.1 Example Rules file
	7.3.2.2. Example getFloor 1
	7.3.2.2. Example getFloor 2

	7.4. Analytics Interface
	7.4.1. bidRequest Object
	7.4.2. bidResponse Object

	7.5. Prebid SDK Interface
	7.6. AMP

	Change Log

