
505 Overview
Welcome to UW CSE 505! This document provides a course overview answering “the five W’s”.

Who
Every course is a collaboration between staff and students to map out some intellectual territory.

Staff

The staff are like “trail guides” who have already spent some time exploring the ideas in the
course and have mapped out a path to help us survey as much territory in as much detail as
time allows.

This quarter we are very lucky to have two instructors and 3 teaching assistants:

●​ James Wilcox

●​ Zachary Tatlock

●​ Oliver Flatt

●​ Kevin Mu

Students

The students are adventurers who are eager to investigate ideas in the course. They have
prepared extensively for the journey, often with decades of prior education and engineering
practice, and are ready for a challenge.

This quarter we are especially lucky to have students from several groups across the Allen
School:

●​ Professional Masters from the PMP Program

●​ PhD students from the Doctoral Program

●​ BSMS students from the Combined Bachelor/Masters Program

●​ BS students from the Undergraduate Program

We’re super excited for this opportunity to share many diverse perspectives on the topics in 505
and build collaborations! The staff have been working hard to make 505 a course that has
something for everyone 😃

https://en.wikipedia.org/wiki/Five_Ws
https://jamesrwilcox.com/
https://ztatlock.net/
https://www.oflatt.com/
https://www.cs.washington.edu/
https://www.cs.washington.edu/
https://www.cs.washington.edu/academics/pmp
https://www.cs.washington.edu/academics/phd
https://www.cs.washington.edu/academics/bsms
https://www.cs.washington.edu/academics/ugrad

What
505 is about the foundations of Programming Languages (PLs). Focusing on the foundations
means that we will learn fundamental techniques that can be applied broadly in systems we
already care about today, as well as many more systems that folks will care about in the future.

However, 10 weeks is a short time for exploring an entire field! To help make everything fit in the
quarter, we will focus on models of PLs and programs. Because they are models, our example
PLs and programs will often be simple “toys” designed to highlight key underlying principles.
Below we sketch a handful of the most important principles we’ll focus on in 505.

Programs are Transition Systems

Conceptually, most programs are just transition systems. A transition system consists of a set of
states S and transition relation, often called “→”, on states from S. For states s1 and s2, we say
“s1 can step to s2” if s1 → s2 holds. This encodes the idea that if our program is in state s1,
then in one step it can reach (“transition to”) state s2. Modeling programs as transition systems
provides a generic approach for reasoning about their behavior and enables us to develop
reusable proof techniques.

Obviously, engineers rarely specify their programs directly in terms of transition systems.
Instead, they use the syntax of their programming language. But the syntax of a language only
tells us which strings are “grammatically correct” programs; syntax doesn’t tell us what programs
mean. For that we have semantics. In particular we will focus on operational semantics which
map a program’s syntax into a transition system!

Once we have modeled a program as a transition system, we can describe its behavior in terms
of the set of states it can reach after starting from some initial state.

https://en.wikipedia.org/wiki/Toy_model
https://en.wikipedia.org/wiki/Toy_problem
https://en.wikipedia.org/wiki/Transition_system
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Semantics_(computer_science)
https://en.wikipedia.org/wiki/Operational_semantics

Given a notion of initial states and a step relation, we can define a program’s reachable states
inductively:

State s is Reachable if either:

●​ InitialState(s), read “s is an initial state” or

●​ There exists another state r such that both:

○​ Reachable(r), read “r is reachable” and

○​ r → s, read “r can step to s”

Invariants and Induction

We will specify the correctness of programs in terms of the states that are reachable in their
corresponding transition systems. Typically, we’ll specify what it means for a state to be “safe”
and then try to show that all of a program’s reachable states are safe states:

In other words, we want to prove that “if a state is reachable, then it is safe”:

∀ s, Reachable(s) ⇒ Safe(s)

Because many interesting programs have infinitely many states, we’ll need to use induction.
This breaks our proofs down into two smaller parts:

Base Case:​ ∀ s, InitialState(s) ⇒ Safe(s)

Inductive Case:​ ∀ s1 s2, Safe(s1) ⋀ (s1 → s2) ⇒ Safe(s2)

Using the inductive definition of Reachable, we can show these two parts are sufficient to prove
that all states our program may end up visiting are in fact Safe.

The key challenge in verification is that our notion of “safe states” may not be inductive! That is,
there may be safe states which can step to unsafe states. That doesn’t necessarily mean our
program is incorrect: if safe states which step to unsafe states are not reachable, then our
program may still be correct, but our notion of “safe” may not be provable by induction:

https://en.wikipedia.org/wiki/Structural_induction

To handle this, we will use the same design pattern over and over: making a property inductive
so that it “implies itself” in the inductive case. We need to define an alternate, “inductive version
of safety” that both (1) implies our target notion of safety and (2) is closed under the step
relation:

In practice, finding such an “inductive version of safety” can be extremely difficult. This is
because our property must “imply itself” in the inductive case: just given the fact that it holds on
a state s must be enough to imply that it holds on all states s can step to. This leads to a subtle
tradeoff:

●​ If we make our property “stronger” (true for fewer states, i.e., a smaller region in the
Venn diagram), then we “know more” from our induction hypothesis, but also have to
“show more” to establish our goal.

○​ If we make our property “way too strong” (too small), it may no longer even be
true for all reachable states!

●​ Dually, if we make our property “weaker” (true for more states, i.e., a bigger region in the
Venn diagram), then we “know less” from our induction hypothesis, but also have to
“show less” to establish our goal.

○​ If we make our property “way too weak” (too big), it may no longer imply our
originally specified notion of safety!

Rather than requiring novel insight for every program we want to verify, we’ll explore general
patterns that provide “once and for all” recipes to prove that systems for proving properties of
programs are correct. This approach of “proving things about programs that prove things” is
known as metatheory and is one of the most fascinating parts of 505.

https://en.wikipedia.org/wiki/Metalogic

Mechanized Formal Verification and “Pen and Paper” Proofs

As we study all these topics in 505, we’ll be using a special kind of laboratory called a proof
assistant, in particular the highly influential Rocq proof assistant. In parallel, we will also often
write more traditional “pen and paper” proofs using English and standard mathematical notation.
Being able to work in either mode will help provide a deeper understanding of both.

Rocq allows us to construct machine-checkable proofs. This helps mitigate a thorny
bootstrapping problem: if we think programs are so complex and subtle that we need to prove
them correct formally, then why should we believe that our proofs about them are any more
correct? (Quis custodiet ipsos custodes?)

To address this issue, Rocq strives to satisfy the de Bruijn Criterion: Rocq includes a small,
heavily tested proof checker and so, as long as the proof checker is correct, we can be
confident that any proofs we develop in Rocq will also be correct. Such leverage is kind of
magical: by getting just one small piece of code right (the proof checker), we can confidently
build an unbounded amount of verified infrastructure (our systems and their accompanying
proofs)!

More importantly for 505, using a proof assistant like Rocq helps us state theorems very
precisely and think very carefully about why they are true. At first, it can feel unnatural to
approach proofs so mechanically, but the intuition we gain by working through each step in
detail will help us tackle progressively larger and more complex problems.

Rocq also demonstrates a beautiful idea known as the Curry-Howard Correspondence: types
are theorems and programs are proofs! We’ll see this perspective in action throughout the
course, but it primarily helps us understand how to formalize and reason about software
systems in terms of inductive types and functions.

Finally, a solid chunk of modern programming languages research is carried out in proof
assistants or uses terminology and notation that we can carefully study using proof assistants.
Thus, using Rocq helps with another goal of 505: making it easier to continue studying
programming languages after the course by demystifying jargon and dense notation.

Despite all these benefits, Rocq is primarily a tool for attaining extremely high confidence in
proofs based on formal models of systems. In practice, we need to be able to roughly model
systems that haven’t been completely formalized and to communicate the high-level intuition
behind proofs to our colleagues and customers. Thus, we will also practice writing proofs in a
more traditional style and translating between mechanized and traditional proofs.

The Big Picture

Like all academic and engineering disciplines, the modern study of programming languages and
verification does not take place in a vacuum. There is a rich history of ideas with both skeptics

https://en.wikipedia.org/wiki/Proof_assistant
https://en.wikipedia.org/wiki/Proof_assistant
https://coq.inria.fr/
https://en.wikipedia.org/wiki/Quis_custodiet_ipsos_custodes%3F
https://www.cs.ru.nl/~herman/talk-FOMCAF.pdf
https://mathoverflow.net/questions/18421/how-do-they-verify-a-verifier-of-formalized-proofs
https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence

and proponents of formal techniques arguing vigorously. There are also many practical
concerns and non-technical stakeholders that we should keep in mind while exploring the
potential applications of rigorous verification.

To help develop such a “big picture” view of programming languages and verification, we’ll read,
reflect on, and discuss a handful of papers together throughout the course. These discussions
will explore the potential needs for and/or implications of rigorous PL and formal verification
techniques.

Why
What’s the point of taking a graduate-level course on programming languages? While it is
unlikely that many course participants will use Rocq in their day-to-day work in the near future,
we think there are a couple of key benefits from taking 505:

●​ We gain access to new perspectives that can help us design better systems.

○​ Thinking in terms of transition systems, invariants, and induction makes it easier
to design, document, and test any applications we may work on in the future.

○​ In fact, just the exercise of formally specifying the correctness of a system in
detail often provides many of the benefits of full formal verification! However, we
need to understand verification in order to write such precise specifications.

●​ We acquire a deeper understanding of ideas that were already familiar.

○​ As the saying goes, “travel to understand where you’re from”.

○​ By seeing other, very different, ways of building systems and reasoning about
their behavior, we can better appreciate the tradeoffs in tools that we’ve been
using long after they’ve become second nature.

●​ We get the opportunity to learn and study some beautiful ideas.

○​ Life is short! Taking time to appreciate deep insights and great works from the
past is a worthwhile goal in its own right.

○​ We will also learn how to use rigorous tools and explore questions like “Where
does correctness come from?” and “What are the limitations of correctness?”

■​ A fascinating parallel comes from the study of high-precision machining
with similar basic questions like “What is flatness?” and “How do we
establish flatness?”

●​ Get ready for the future?

○​ Who knows, maybe one day software companies will be liable for their products
and companies will have to honor warranties in order to be competitive.

○​ In such a world, the economics of formal verification may become much more
compelling, and students from 505 should have a head start as we’ll already

https://www.youtube.com/watch?v=OWa3F4bKJsE
https://www.jstor.org/stable/531485?seq=1
https://www.jstor.org/stable/531485?seq=1

have practice formalizing and making rigorous guarantees about software
systems!

How
We can only really learn new material by experimenting with it and getting feedback on our
efforts. In 505, participants will get practice with ideas from the course through homework
assignments and reading reflections. 505 staff will grade homeworks and reflections to provide
feedback and assign “points” for each submitted deliverable.

Homework Assignments

We are planning on 6 homework assignments this quarter. Each homework will involve
formalizing programs and proving properties about their behavior, both in Rocq and doing some
traditional “pen and paper” proofs (i.e., written in English + mathematical notation). We also
expect several homework assignments to involve writing some code in the languages we are
formalizing.

The first homework will be short, mainly to ensure that everyone has their software environment
set up for 505 and is familiar with the basics of writing proofs in Rocq and in traditional “pen and
paper” style. This first homework will be worth 50 points and is the only homework that course
participants must complete individually.

Subsequent homeworks will be worth 150 points and can be completed with a partner. Out of
the 150 total points, approximately 30 points come from “challenge problems” which may
require substantially more work. We expect completing the normal problems to take roughly 6
hours of work over a two-week period, though how long each homework takes and how long
each group takes can vary considerably. Please see the grading policy below for more detail on
how points add up to determine an overall course grade.

Homework assignments will be posted on the course website and should be submitted by
uploading your code and proofs to the 505 Gradescope page. The first homework should be
submitted individually. For subsequent homeworks, if you are working with a partner, please
submit just one copy on Gradescope, and add each group member’s name using the
Gradescope interface.

Reading Reflections and Discussions

We will read and discuss 5 papers this quarter. Several of the readings are relatively
non-technical; they're intended to foster discussion and get us thinking about the "big picture"
for software reliability and verification.

Each reading reflection will have three short components:

https://sites.google.com/cs.washington.edu/cse505-25sp/home
https://www.gradescope.com/courses/1014753

1.​ Summary and Reconstruction

○​ A concise summary of the paper in your own words.

○​ Focus on the parts of the paper that relate to your personal answers that follow,
with attention to the supporting evidence the paper gives.

2.​ Something that resonated with you

○​ Discuss an aspect of the paper that resonates with your personal experience.
Have you seen examples of the paper's ideas in your work? Did the paper unlock
something for you that will cause you to approach future problems differently?
This part will often focus on the paper’s reusable, conceptual insights, but that’s
just a trend, not a requirement.

3.​ Something you felt was missing

○​ Discuss an aspect of the paper that seems to contradict your personal
experience, or something from your personal experience that doesn't seem to fit
into the paper's theory.

○​ Alternatively (or additionally), a succinct exploration of what future research or
industrial applications this paper might inspire

Each component is worth 15 points and should be roughly 5 sentences, though you are
certainly welcome to write more, especially in the second and third parts. Each part is graded on
a ternary scale: 5 points for being a nonempty string, 10 points for not sounding like an LLM,
and 15 points for connecting to your personal experience. There are 45 available points (15
points x 3 parts).

There are 5 additional points available, if you would like to invest additional time, thought, and
effort in your reflection. In that case, please indicate using the checkbox on the Gradescope
submission that you are attempting to get the additional 5 points. We will take that into
consideration while grading your reflection.

There are several ways to earn the additional 5 points in a reading reflection:

●​ Connect the paper back to what we are learning in class. How are the authors’ concerns
addressed or not addressed by the techniques we are studying?

●​ Connect the paper to broader historical and technical context in society. What are the
far-reaching implications of the authors’ claims? Will we care about these ideas next
year? In 10 years? In 100 years?

●​ Propose a fairly detailed follow up investigation or further investment in the ideas from
the paper. What would be a good research project taking the next steps to explore the
authors’ claims more deeply? Is there a startup company you could build around the
ideas from the paper?

●​ Read additional related resources (many linked to from the Readings page and in the
Community Notes) and incorporate discussions of those resources into your reflection.

https://sites.google.com/cs.washington.edu/cse505-25sp/reading
https://docs.google.com/document/d/1zsV0fRw6uFvJjiTnBsEydGUf1rtAvPxElA8Fr47c4tI/edit?usp=sharing

There are probably many more ways to earn the extra 5 points in reflections too! The points
above are just some suggestions to get you thinking. Be creative!

Links to PDFs for each paper and the reflection due dates will be posted on the course website.
Reading reflections should be entered in the relevant assignment on the 505 Gradescope page.
The Gradescope assignment textbox interface is admittedly a bit spartan, but using Gradescope
provides the staff with a uniform interface for reviewing reading reflections. You might find it
helpful to draft your responses in a separate text editor or word processor, and then copy-paste
your answers into Gradescope.

After reading reflections are due, we may briefly discuss the paper together during lecture in
smaller breakout groups and as a class all together.

Community Docs

A great way to deeply understand new concepts is by drafting, editing, and discussing notes
with colleagues. To help practice these skills and further build a supportive community, this
quarter we’ll be collaboratively building the 505 Community Notes.

There is no prescribed approach to building the Community Notes; they should reflect your
understanding of the PL topics we’re learning and what was helpful to you along the way. The
notes should also help serve as a guide for others who are reviewing lecture material or
perhaps looking for a slightly different perspective on some topic.

While we’re not dictating any particular required content in the Community Notes, starting from a
blank page can be intimidating, so we may seed the doc with some examples to get things
moving. We expect folks may want to add things like:

●​ Summaries (and corrections!) of lecture material.

●​ Examples, figures, and diagrams that highlight important PL concepts.

●​ Finer-grained timestamp breakdowns for the topics covered in lecture videos.

●​ Overviews as well as detailed examples of various Rocq tactics.

●​ High-level “pen and paper” proofs of key theorems we see in Rocq during lecture.

A real easy way to contribute to the docs is by porting over and cleaning up versions of the
notes from the previous offering!

505 is also supported by several additional important documents you can contribute to:

●​ Software Setup

○​ Instructions for installing Rocq, VS Code, and plugins on various platforms.

https://sites.google.com/cs.washington.edu/cse505-25sp/home
https://www.gradescope.com/courses/1014753
https://docs.google.com/document/d/1zsV0fRw6uFvJjiTnBsEydGUf1rtAvPxElA8Fr47c4tI/edit?usp=sharing
https://docs.google.com/document/d/17YpDAbrUMukAuaaID8o4iQh8H_YJxChTzmH_y3yw1Kk/edit?usp=sharing
https://docs.google.com/document/d/10tXGGJlwZ5fl2Er40vgQWBs_dSVnJ_qyiIx8n3zhnR0/edit
https://docs.google.com/document/d/10tXGGJlwZ5fl2Er40vgQWBs_dSVnJ_qyiIx8n3zhnR0/edit
https://docs.google.com/document/d/1oZFIWncbk7QY9Xt9iQVq-l86qIJJDoXht69X6lT_q1c/edit?usp=sharing

●​ Style Guide

○​ Guidance and best practices for writing proofs, etc.

●​ Lecture Slides

○​ Course participants can leave comments via the Google Slides interface.

●​ Lecture and Homework Code

○​ You can fork and issue merge requests via the CSE Gitlab.

●​ Rocq Fundamentals

○​ This 505 reference document shows more of what’s going on “under the hood” at
a lower level when we use Rocq.

To encourage contributions and recognize the hard work it takes to write high quality docs, each
week you will be able to earn up to 10 extra points for contributing the 505 Community Notes or
other course documents. This does not necessarily require a significant amount of time!
We welcome contributions of any size, and you are encouraged to help out however and
whenever you can.

To calibrate, here are some rough examples of potential contributions and approximately how
many points they may be worth:

Pts Example Community Docs Contribution

1 point Fixed some typos and added some links or other citations.

5 points Added a clear, actionable comment pointing out how something is confusing.

5 - 10 points Added or enhanced a timestamp breakdown for a lecture video.

5 - 10 points Incorporated conclusions from the discussion board back into the docs.

10 points Added a figure or example to highlight some PL concept.

10 points Expanded on a section to resolve a comment left on why it was confusing.

10 points Drafted a new section of the doc on a lecture topic or proof technique.

10 points Edited a section of the doc for clarity and consistency with other sections.

10 points Made a short video demonstration of some proof technique or similar.

In terms of effort, we roughly expect:

●​ 1 point contributions to require a couple of minutes

●​ 5 point contributions to require around 15 minutes

●​ 10 points contributions to require 30 minutes

https://docs.google.com/document/d/1kaBanST7g-IOR2_hMWHDJa3VT7BL06muo8_g57qY0F8/edit?usp=sharing
https://drive.google.com/drive/folders/11a51J-YsDq2ykDvX8OPJviK5lDG44iQX?usp=sharing
https://support.google.com/docs/answer/65129?co=GENIE.Platform%3DDesktop&hl=en
https://gitlab.cs.washington.edu/cse-505-spring-2025/505sp25
https://gitlab.cs.washington.edu/
https://docs.google.com/document/d/1e4VibIhMqa6roK054ZxrmNFCieBSZ4LOr3Jz8nC10bk/edit?usp=sharing

As with any deliverable, Community Docs contributions should be submitted in the 505
Gradescope (sign up using add code X2G5Y5). In these “docs assignments'' you will be able to
indicate how many points you feel your contribution should earn and briefly describe how you
helped grow or improve the docs. We will look at your contribution and may assess that it is
worth more or fewer points than you estimated, but we will always give thanks and feedback for
every contribution.

Giving and Accepting Feedback
We often identify closely with our work, whether it is in code, written English, a visual diagram,
or a video tutorial. It can be very difficult to accept even well-intentioned constructive feedback.
Knowing this, many also hesitate to give such feedback. We want 505 to be a space where folks
feel comfortable exploring, making mistakes, learning, and helping each other along the way.

Always be extra patient, kind, and respectful when you leave comments on or edit someone
else’s work! When you receive feedback or see that someone has tried to improve your own
work, thank them for their effort and take a few moments to understand their contributions and
the motivation behind them. If you disagree with edits or suggested improvements, discuss the
tradeoffs with your colleague calmly and respectfully. Remember that our docs are all versioned,
so nothing should ever be lost. Please also review the 505 Ground Rules.

Feedback and Grades

The course staff will strive to provide prompt and helpful feedback for each deliverable. This
feedback will also indicate how many points each participant earned.

OK, so what’s the deal with this whole “points” thing? It’s an experiment to help empower you
to choose your target overall course grade and best manage your time.

In many courses, students struggle to anticipate how much effort must be invested on each
assignment in order to achieve a desired overall grade. Making matters worse, instructors often
grade on a curve, which pits students against one another in unhealthy competition. Students
default to fighting for every single point rather than focusing on mastering new material.

But this is all nonsense. We are here to learn, not strive to outcompete our friends and
colleagues!

The staff believe that, from the very beginning of the course, students should be able to decide
what overall grade they would like to achieve in the course. This choice should be informed by
rough estimates of how much effort earning that grade may entail. Everyone is busy; you are
best positioned to decide how to most wisely invest your time.

https://www.gradescope.com/courses/1014753
https://www.gradescope.com/courses/1014753

So, we’re testing a scheme to see how that works. Here’s the planned breakdown of possible
points that can be earned throughout the course (subject to minor tweaks as the course
progresses):

Deliverable

Points

Core Extra Points Total

Homework 1 50 0 50

Homeworks 2 - 6 120 ✕ 5 = 600 30 ✕ 5 = 150 150 ✕ 5 = 750

Readings 1 - 5 45 ✕ 5 = 225 5 ✕ 5 = 25 50 ✕ 5 = 250

Community Docs 0 10 ✕ 10 = 100 10 ✕ 10 = 100

Overall 875 275 1,150

Overall course grades will reflect total points earned according to the formula:

⌊Points / 25⌋ / 10

Which leads to the following breakdown (maxed out at 4.0, see detailed version):

​ 4.0 if points >= 1000​ ​ 3.6 if points >= 900​ ​ 3.2 if points >= 800

​ 3.9 if points >= 975​ ​ 3.5 if points >= 875​ ​ 3.1 if points >= 775

​ 3.8 if points >= 950​ ​ 3.4 if points >= 850​ ​ 3.0 if points >= 750

​ 3.7 if points >= 925​ ​ 3.3 if points >= 825​ ​ 2.9 if points >= 725

There are roughly 110 points available per week throughout the course. Points get a bit harder
to earn as the quarter progresses and the material becomes more complex.

Not everyone needs to get every point on every deliverable. Everyone should be able to get
most of the points in a reasonable amount of time, but for students who want to dig more into
the material, the extra points provide additional opportunities to practice and engage with the
course more deeply.

If you decide to target an overall course grade above 3.5, then you (and, on homeworks, your
partner) will need to earn points from challenge problems, extra 5 points from reading
responses, or extra points from the community notes. Some challenge problems may be harder
to earn than others, though we will always do our best to roughly estimate difficulty for each
problem.

https://docs.google.com/spreadsheets/d/1EanPzMzXmTh82feSkTStu0vU-QUebxroEVhDIYEb80I/edit?usp=sharing

We emphasize again that it’s OK to skip challenge problems if doing so is compatible with your
target course grade or you are especially busy some weeks! It’s fine to target and work toward
whatever overall course grade you believe is the best fit for you given other demands on your
time and energy.

Late Policy

Homework solutions, reading reflections, and community doc contributions will always be due
by 5pm PT on Fridays. These deadlines are strict.

However, you may use up to two late days for each assignment. Submitting any time after the
deadline uses at least one full late day. No credit will be granted after 8am on Monday following
a Friday deadline.

Course staff may be slower at answering homework questions on the 505 message board
or chat over the weekend. Coming to regular office hours is the surest way to get high quality
assistance. The next best option is to ask questions early on the course discussion board. You
are strongly advised to submit deliverables early to avoid any unexpected issues.

Academic Integrity

When you submit a homework solution or reading reflection, you are asserting that the work it
contains is your own. Any attempt to misrepresent the work you did will be dealt with via the
appropriate University mechanisms. Please carefully review the UW Academic Misconduct
Process which provides the following policy:

Engineering is a profession demanding a high level of personal honesty, integrity and
responsibility. Therefore, it is essential that engineering students, in fulfillment of their
academic requirements and in preparation to enter the engineering profession, shall
adhere to the University of Washington’s Student Code of Conduct.

Any student in this course suspected of academic misconduct (e.g., cheating, plagiarism,
or falsification) will be reported to the College of Engineering Dean’s Office and the
University’s Office of Community Standards and Student conduct. (See CoE website for
more detailed explanation of the academic misconduct adjudication process). Any
student found to have committed academic misconduct will receive a 0-grade on
impacted academic work (e.g., assignments, project, or exams).

If there is any chance you have violated this policy, you must clearly indicate in your
submission what work was not entirely your own. If you do, the worst that will happen is you
may lose some points on an assignment. This is much better than the alternative.

https://edstem.org/us/courses/77870/
https://www.engr.washington.edu/mycoe/academic/integrity
https://www.engr.washington.edu/mycoe/academic/integrity
https://www.washington.edu/cssc/for-students/student-code-of-conduct/

Where
Course material will be presented during lectures on Tuesdays on Thursdays each week, with
each lecture being offered twice: 90-minute segments on Tuesdays and Thursdays at 10:00am
in CSE G04 and a combined 180 minute session Tuesday evenings at 6:30pm in CSE2 G10.
You can attend whichever lecture is most convenient for you, regardless of whether you
registered for “505” or “P505”.

Welcoming, Supportive Space

As trail guides and adventurers, we will be existing in a community together this quarter as we
explore the foundations of programming languages. Every community develops shared values
and norms that guide interactions among its members. Our primary goal is to create a
welcoming environment where everyone can feel comfortable trying new things and
tackling hard problems. No one can be expected to learn effectively if they are being harassed
or bullied, nor if they are made to feel like they do not belong.

Ground Rules
To lay the groundwork for such an environment, we have set out the following ground rules.

●​ Harassment, bullying, and threats have no place in 505. This may sound obvious,
but it is too important not to mention explicitly. There is a limitless number of ways to
harass people, so we cannot list all of them, but they might include harassment based on
gender, sexual orientation, disability, physical appearance, body size, skin color, race, or
religion, as well as sexual images in public spaces, deliberate intimidation, stalking,
following, harassing photography or recording, inappropriate physical contact, and
unwelcome sexual or romantic attention. Don’t do any of these things!

●​ Be mindful of how you talk to and about other people in the class. Language shapes how
we think, and this class is in large part about the importance of (programming) language.
Do not use language that creates the impression that someone does not belong in
our community.

○​ Blatant -isms: saying things that are explicitly racist, sexist, homophobic, etc. is
not allowed. For example, do not argue that some people are less intelligent
because of their gender, race or religion.

○​ Subtle -isms and small mistakes made in conversation are not a violation of
these rules. However, repeating something after it has been pointed out to you
that your language works against a welcoming environment, or antagonizing or
arguing with someone who has pointed out your subtle -ism is considered
unwelcoming behavior and is not allowed.

○​ Maliciousness: deliberately attempting to make others feel bad, name-calling,
singling out others for derision or exclusion is not allowed. For example, don’t tell
someone they’re not a real programmer, or that they don’t belong in this class.

○​ “Jokes” (or serious actions, for that matter) that point out ways in which someone
might not seem to belong are not okay, either.

●​ Do not use course communication channels for completely unrelated discussion.
It’s fine to have “partially off topic” conversations that might be interesting to the
community, such as related topics, videos, or events that people might find interesting.
But do not use even such miscellaneous channels to advertise things completely
unrelated to the course. Do not direct message people or email them about topics
unrelated to the course without their permission. For example, do not ask someone on a
date.

●​ Another important aspect of our community ground rules is Academic Integrity. See that
section for details.

How We Handle Ground Rules Violations
We want you to know that we have your back. We encourage you to get a staff member
involved if you notice someone violating the Ground Rules and cannot or do not want to resolve
it yourself. We recommend contacting staff via email for these issues.

We hope it doesn’t come to this, but at our discretion, we will escalate violations of these rules
to the CSE advising staff, possibly leading to violators being permanently removed from the
course. These rules are a rough sketch, and we can’t possibly write down all the ways someone
might hurt the community, so we may escalate issues that are not explicitly written down here.
On the other hand, when appropriate, we want to be forgiving, too: if it seems like you’ve made
a good-natured mistake, we want to give you space to grow and learn.

Fostering a Welcoming Environment
It takes more to create a welcoming environment than just following the ground rules. Try to
make an extra effort to be kind and empathetic in how you act! Here are a few suggestions on
how to make our community even more welcoming:

●​ Assume that all your fellow students have what it takes to succeed in this course! No
matter what people look like, everybody in 505 is here because they want to learn about
the foundations of programming languages.

●​ Let people choose how much they want to share about themselves. It can be tempting to
ask somebody about their background based on something about them you can see or
hear. They might want to talk about themselves, but maybe they just want to learn about
programming languages. Let them choose!

●​ Avoid “feigning surprise”. Don’t act surprised when someone says they don’t know
something. This applies to both technical things ("What?! I can't believe you don't know
what structural induction is!") and non-technical things ("You don't know who Benjamin
Pierce is?!"). Feigning surprise has absolutely no social or educational benefit: When
people feign surprise, it's usually to make them feel better about themselves and others

feel worse. And even when that's not the intention, it's almost always the effect. We want
everyone to feel comfortable saying “I don’t know” and “I don’t understand”.

●​ Avoid “well-actually”. A well-actually happens when someone says something that's
almost, but not entirely, correct, and you say, "well, actually…" and then give a very
minor correction. This is especially annoying when the correction has no bearing on the
actual conversation. This doesn't mean we aren’t interested in correctness or precision
in this class—in fact, we are more interested in correctness and precision than pretty
much anybody else! But almost every occurrence of a well-actually in our experience is
about grandstanding and showing off, not truth-seeking.

●​ No subtle -isms. Subtle racism, sexism, homophobia, transphobia, and other kinds of
bias are not welcoming. These are often small things that we all sometimes do by
mistake. For example, saying "It's so easy my grandmother could do it" is a subtle -ism.
Like the other bullet points in this list, it’s not a giant deal to mess up -- just apologize
and move on.

Acknowledgments
We gratefully acknowledge !!con and the Recurse Center’s ideas on building community. Much
of our ground rules are adapted from their codes of conduct and social rules documents.

Resources

●​ Course Website

○​ Includes links to all the resources below plus:

○​ Lecture times and corresponding Zoom link

○​ Office hours and corresponding Zoom links

●​ Slides and Notes

○​ Shared folder with non-code lecture material

●​ 505 Gitlab

○​ Code from lecture and homework skeletons

●​ Discussion Board

○​ The official channel for help, clarification, and announcements outside of lecture

●​ Gradescope

○​ For submitting reading summaries and homework assignments

○​ To sign up, use this add code: X2G5Y5

https://sites.google.com/cs.washington.edu/cse505-25sp/home
https://drive.google.com/drive/folders/11a51J-YsDq2ykDvX8OPJviK5lDG44iQX?usp=sharing
https://gitlab.cs.washington.edu/cse-505-spring-2025/505sp25
https://edstem.org/us/courses/77870
https://www.gradescope.com/courses/1014753

When
This spreadsheet has our rough plan for what we will cover and when deliverables are due this
quarter, though remember:

“Plans are worthless, but planning is everything.” [source]

Ten weeks is short, so we will try to balance between covering core concepts in depth and
seeing as many useful techniques as possible!

https://docs.google.com/spreadsheets/d/1s5arVGHwyMWtzxCga9LHAO_Pzkxoa5z2Tla8gPkBAVM/edit?gid=1094077140#gid=1094077140
https://quoteinvestigator.com/2017/11/18/planning/

	505 Overview
	Who
	Staff
	Students

	What
	Programs are Transition Systems
	Invariants and Induction
	Mechanized Formal Verification and “Pen and Paper” Proofs
	The Big Picture

	Why
	How
	Homework Assignments
	Reading Reflections and Discussions
	Community Docs
	Giving and Accepting Feedback

	Feedback and Grades
	Late Policy
	Academic Integrity

	Where
	Welcoming, Supportive Space
	Ground Rules
	How We Handle Ground Rules Violations
	Fostering a Welcoming Environment
	Acknowledgments

	Resources

	When

