
CERT: SMS Parsing

Data Model Blueprint: msg_workflow

​

Field Name Purpose Datatype/Table

source_task_id Inbound Email/SMS Source
(Another workflow in case of
chained workflows).

FK referenced from
scheduler_task.

workflow_task_id Parsing workflow FK referenced from
scheduler_task.

s3.meta_fields() metadata

Changes in msg_log:

Field Name Purpose Datatype

is_parsed To process the log for parsing
unparsed messages.

Boolean

source_task_id Inbound Email/SMS Source FK referenced from
scheduler_task.

reply To store the result of the 1st pass
parser.

text

The msg_workflow table is described above in the table.Here,both “Source” and “Workflow” are Foreign Keys referenced
from the scehduler_task table.These are scheduled tasks defining the incoming Email/SMS source/connection (inbound
email/SMS handler : See https://github.com/flavour/eden/blob/master/models/tasks.py#L49) and the parsing workflow task
(See below for the parsing scheduler task) respectively.
New records are inserted into the msg_workflow table when a new inbound message source is defined i.e. the workflow for
that particular source and the source task itself are the DB entries/records.However, we would rather use prepopulate folders
for this purpose;but using the above approach is a viable option. The parser task method takes both the fields as args, where
it maps each source with the type of workflow required.
Data model changes and designing of process_log() has already been done to implement the current parse_message()
routine.(See https://github.com/flavour/eden/pull/57).​ ​

https://github.com/flavour/eden/blob/master/models/tasks.py#L49
https://github.com/flavour/eden/pull/57

UI/Prepop:

The data model is integrated with the prepopulate folders (or a sub-folder say private/prepopulate/parsing)
which serves as the initial UI.The post-install UI will consist of a CRUD interface admin panel, a simple
s3_rest_controller().However, eventually this is planned to be the part of the WebSetup.

Task Scheduler Details:

The parsing rules are defined in s3parsing.py.These are imported by tasks.py to define different parsing
tasks/workflow.These tasks are instantiated in zzz_1st_run.py by calling the schedule_task() routine, say,
process_log().The purpose of process_log() will be to parse the messages which have not been parsed yet.To
identify the unparsed records in msg_log , a boolean valued field say “is_parsed” (or “is_processed” ?) is
added.Now, the routines which defines the parsing rules (e.g. parse_message()) are scheduled as parsing
workflows :workflow_task_id.Therefore, when the scheduler processes the log, it greps for the
records/messages with ‘is_parsed’ set to False, and then it chains the concerned parsing task(this is achieved
by the msg_workflow table, the ‘source_task_id’ field in msg_log will help retrieve the respective parsing
workflow_task_id from msg_workflow).
Hence, the source is synchronised in both msg_workflow and msg_log.After,the message has been parsed or
the apt action is taken (which may include generating a reply or directing the message to the concerned
module), the respective message records in msg_log are flagged as “parsed” (or “processed” ?).
This has also been discussed in detail here:
https://docs.google.com/document/d/1tVZ3KJUp5ieFKCCJ_FosqsHIXqtsXErjQlrano-iDUE/edit?pli=1 .

https://docs.google.com/document/d/1tVZ3KJUp5ieFKCCJ_FosqsHIXqtsXErjQlrano-iDUE/edit?pli=1

The diagram below illustrates the purpose behind having a msg_workflow,how it operates and the possible
relations between the different workflows.

