
Improved variable length raw forward index format

Goals​ 1

Non-Goals​ 1

Problem​ 2

Current Format​ 3
Advantages of the current format​ 4
Disadvantages of the current format​ 4

Observations​ 4

Proposal​ 8
Rejected Variations​ 10

Dynamic buffer allocation​ 10
Store maximum size of uncompressed chunk in header to allow readers to size
decompression buffers​ 10

Goals
●​ Introduce new format for variable length raw forward indexes which achieves the

following:
○​ Balanced chunk size
○​ Small number of chunks whenever a segment is sized appropriately
○​ Low memory usage during ingestion
○​ Permits usage in realtime segments

Non-Goals
●​ Replace current format by default. This format will require opt in configuration until or

unless it is accepted by the community.
●​ Change chunk compression defaults, this is already configurable.

Problem

Raw forward indexes consist of compressed chunks of variable length data, as well as a header
consisting of chunk offsets. This format requires that the number of documents per chunk is
fixed1. While this works well for fixed width data or variable length data with very low variance
(e.g. VARCHAR(N) for small N) this poses problems when the variance in length is high because
of numerous constraints.

●​ Each value needs to fit entirely within a chunk, so the chunk size must be at least the
size of the largest value.

●​ Every time a raw value is accessed, the chunk it resides in needs to be decompressed.
The cost of decompressing a chunk, and therefore the overhead per random access,
increases with the chunk size. ~1MB has been determined to be a good size (but this
should be investigated without prejudice).

●​ Compression tends to be more effective for larger data sets as there tends to be
commonality within a corpus of documents: in order to get good compression levels in
the average case, we need to pack lots of documents into a single chunk.

●​ Compression libraries work on chunks, and many cannot produce a decompressible
sequence of bytes unless the entire input was available at compression time, though
many support streaming2.

●​ The larger the number of documents per chunk, the larger the buffer for storing
uncompressed values needs to be. If the number of documents is greater than 1, this
can only safely be achieved by using a multiple of the length of the longest value in the
segment, which leads to high memory usage.

●​ The more chunks, the more offsets are required, which increases the size of the header
and decreases the efficiency of storage.

The effective outcome is a difficult choice about what to do when there is even a single large
value:

●​ Enforce a minimum number of docs per chunk N, choose a chunk size equal to the
largest value length times the number of docs: this needs lots of RAM, risks OOM.

●​ Enforce a maximum chunk size = max(1MB, sizeof(longest value)). This
will never OOM3, but the number of documents per chunk may be as low as 1. This

3 Unless enormous values are encountered but this is impossible for other reasons like limits in Kafka
payload sizes.

2 Implementations of streaming compression are usually slower than block oriented compression APIs
and tend to produce inferior compression ratios.

1 Note that the chunk size is not consistent across columns or across segments, it is determined from the
column statistics for each segment.

explodes the metadata, decreases chunk level compression ratios for small documents
and means decompression cannot be amortised over a set of documents when scanning
the index.

Current Format

The class BaseChunkSVForwardIndexWriter defines the format of the raw variable length
forward index best. There have been numerous versions of this format but this section
describes version 3; the current version.

The format consists of a 28 byte header, followed by a list of offsets to chunk starts, followed by
the chunks.

The header consists of the following fields:

Offset Name Purpose Size

0 version Allow evolution of
format

4

4 numChunks Allows reader to
resolve docId to
chunk number

4

8 numDocsPerChunk Allows resolution of
docId to value within
a decompressed
chunk

4

12 sizeOfEntry Used by reader for
sizing of read buffer

 4

16 totalDocs Unused 4

20 compressionType Compression
algorithm metadata

4

24 dataHeaderStart Where the chunks
start in the file

4

The offsets which follow on from the header are fixed width; they were 32 bit values in versions
1 and 2, but currently have 64 bits in version 3. The offsets section of the file is not very large: a
1GB column split into 1MB chunks would require 1024 offsets or 8KB. Columns will usually be

much smaller than this. However, if there is one value in a segment column of, say, 10 million
rows which is large enough to push the number of documents per chunk down to 1, there would
be 10 million chunks, or 76MB of metadata.

Each chunk is a sequence of bytes delimited only by the offsets earlier on in the file. Individual
use cases can be catered for by storing metadata within the chunk prior to compression, with
the caveat that this can’t be accessed without decompression of the chunk.

Advantages of the current format

●​ Offsets with a fixed number of documents allow constant time docId to chunk offset
resolution by dividing the docId by the number of documents per chunk.

●​ Given a decompressed chunk, intrachunk metadata can be used to support random
access, so that a document can be resolved by documentId in constant time.

●​ The header was carefully designed to be evolved!

Disadvantages of the current format

●​ A fixed number of documents per chunk creates a tradeoff between metadata size,
compression ratio, and decoding efficiency on one side and buffer size in RAM on the
other.

●​ The format requires knowledge of the maximum value length, which means it can’t be
used for realtime columns, as it depends on segment level statistics.

●​ The maximum size of a decompressed chunk is not recorded, so the reader does not
have the option to size a fixed buffer to decompress into.

Observations

●​ Observation 1: if a target of 1MB per compressed chunk is achieved, sensible segment
sizing keeps the number of chunks small. This means that:

1.​ Random access to chunks can be traded for achieving a 1MB target.
2.​ Some level of metadata bloat can be accepted in exchange for achieving a 1MB

chunk size target.
●​ Observation 2: ascending sets of integers (i.e. RoaringBitmap) are used pervasively

throughout Pinot for skipping over rows in columns. It might feel like there is a lot of

random access (ForwardIndexReader accepts docId as input and does not impose
that they are sequential) but most access is really sequential. This means that:

1.​ Loss of random access to chunks can be ameliorated regardless of the number
of chunks if the metadata allows for skipping over chunks to advance until the
chunk containing a docId very quickly.

●​ Observation 3: whilst access to a given chunk is constant time if the number of
documents per chunk is constant, compared to the cost of decompression, the
advantage over slower search approaches is unclear. Assuming a decompression speed
of 2GB/s for Snappy4 - decompression of a 512KB compressed chunk will take 250us,
which is over 1000x slower than the time to locate a chunk for a sensible number of
chunks for a sensibly sized segment, even if linear search is adopted. With binary search
and simple optimisations to exploit sequential access patterns, we can expect this ratio
to be more like 25000-50000x; locating chunks cannot be a bottleneck.

Consider the following benchmark, which does not even consider more sophisticated
approaches than binary and linear search:

@State(Scope.Benchmark)​
public class Partitioning {​
​
 @Param("1000")​
 int size;​
 @Param({"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"})​
 int decile;​
​
 private int[] sizes;​
​
 private int target;​
 int avgSize;​
​
 @Setup(Level.Trial)​
 public void setup() {​
 sizes = new int[size];​
 int sum = 0;​
 for (int i = 1; i < size; i++) {​
 int next = 100;​
 sizes[i] = sizes[i - 1] + next;​
 sum += next;​
 }​
 target = sizes[decile * (size / 10)];​
 avgSize = sum / sizes.length;​

4 https://github.com/lz4/lz4#benchmarks

https://github.com/lz4/lz4#benchmarks

 }​
​
 @Benchmark​
 public int divide() {​
 return target / avgSize;​
 }​
​
 @Benchmark​
 public int linearSearch() {​
 for (int i = 0; i < sizes.length; i++) {​
 int size = sizes[i];​
 if (size > target) {​
 return i - 1;​
 }​
 }​
 return sizes.length;​
 }​
​
 @Benchmark​
 public int binarySearch() {​
 int pos = Arrays.binarySearch(sizes, target);​
 return pos >= 0 ? pos : -pos - 1;​
 }​
}​

Random access has very little advantage over binary search for the numbers of chunks we
would aim to have.

Benchmar
k Mode Threads Samples Score

Score
Error
(99.9%) Unit

Param:
decile

Param:
size

binary avgt 1 5 11.017476 2.431537 ns/op 0 1000

binary avgt 1 5 9.53242 0.782707 ns/op 1 1000

binary avgt 1 5
10.93071

7 0.944045 ns/op 2 1000

binary avgt 1 5
14.89898

1 0.696605 ns/op 3 1000

binary avgt 1 5
10.22234

1 0.833502 ns/op 4 1000

binary avgt 1 5 9.616832 1.24699 ns/op 5 1000

binary avgt 1 5 8.950074 2.473554 ns/op 6 1000

binary avgt 1 5
10.48462

8 1.312675 ns/op 7 1000

binary avgt 1 5 11.214457 1.277363 ns/op 8 1000

binary avgt 1 5
10.56530

6 1.937458 ns/op 9 1000

divide avgt 1 5 3.428586 0.168904 ns/op 0 1000

divide avgt 1 5 3.448357 0.109429 ns/op 1 1000

divide avgt 1 5 3.505568 0.896609 ns/op 2 1000

divide avgt 1 5 3.585745 0.761142 ns/op 3 1000

divide avgt 1 5 3.879105 0.485956 ns/op 4 1000

divide avgt 1 5 3.733576 0.575513 ns/op 5 1000

divide avgt 1 5 3.336567 0.245159 ns/op 6 1000

divide avgt 1 5 3.323152 0.057803 ns/op 7 1000

divide avgt 1 5 3.337873 0.232488 ns/op 8 1000

divide avgt 1 5 3.95304 0.568197 ns/op 9 1000

linear avgt 1 5 3.26149 0.570315 ns/op 0 1000

linear avgt 1 5
25.00605

8 5.533474 ns/op 1 1000

linear avgt 1 5 48.116374
12.45373

4 ns/op 2 1000

linear avgt 1 5
69.58948

9
13.68859

3 ns/op 3 1000

linear avgt 1 5
85.42491

2 4.8607 ns/op 4 1000

linear avgt 1 5
107.6647

8 8.685049 ns/op 5 1000

linear avgt 1 5
138.9743

0
27.40932

1 ns/op 6 1000

linear avgt 1 5 149.62112 9.669953 ns/op 7 1000

linear avgt 1 5
174.6857

0
13.03085

3 ns/op 8 1000

linear avgt 1 5
195.9976

2
15.54190

2 ns/op 9 1000

Proposal

Make the following alterations to the file format

1.​ Increment the version in the header to 4.
2.​ Remove numChunks, numDocsPerChunk, totalDocs from the header.
3.​ Add the target chunk size to the header. Readers should use this to inform

decompression buffer sizing policies. Chunks which require larger buffers than the target
chunk size after decompression should be treated as exceptional and allocated for just
in time. Mitigations for large data are discussed under “rejected alternatives” but in short,
users with very large data should be able to configure a buffer size for their (rare) use

case, enough to prevent this from being frequent. Compression libraries can read
compression metadata about the decompressed size of compressed data, so this does
not need to be recorded for each chunk in the header.

4.​ Allocate a fixed capacity buffer of 1MB to buffer uncompressed documents into. If a
document does not fit into the remainder of the buffer, compress the contents of the
buffer and flush the chunk to disk. If after flushing, the value still does not fit in the buffer,
compress the value and write it to disk as a single value chunk. This breaks the
dependency on segment level statistics and allows for usage for realtime
segments.

5.​ Record the smallest docId in the header alongside the offset to the chunk start. Since
values are written in ascending docId order, this is effectively the cumulative count of
documents in chunks up to but not including this chunk; the number of documents in the
chunk i is . Since the documents are stored in ascending 𝑚𝑖𝑛𝐷𝑜𝑐𝐼𝑑

𝑖+1
− 𝑚𝑖𝑛𝐷𝑜𝑐𝐼𝑑

𝑖

docId order, the minimum docIds for each segment can be binary searched to locate the
chunk in time similar to the existing random access.

a.​ Knowing that document ids are accessed sequentially can be used to prune the
space for the binary search by storing the last document id in the reader context.

b.​ The cumulative counts correspond to the doc id range for each chunk, which can
be stored in the reader context to avoid doing extra lookups (check id the doc id
is in the current range)

The new header format would be

Offset Name Purpose Size

0 version Allow evolution of
format

4

4 targetDecompres
sedChunkSize

Allows readers to
size buffers for
decompression
purposes

4

8 sizeOfEntry Used by reader for
sizing of read buffer,
max value tracked
during building the
segment

 4

12 compressionType Compression
algorithm metadata

4

16 dataHeaderStart Where the chunks
start in the file

4

The header would be followed by repeated chunk metadata:

Name Purpose Size

Byte Offset The start of the chunk in
bytes

8

DocId Offset The first doc id in the chunk.
The MSB is used to mark
huge chunks.

4

In mixed version clusters, reader support should be ubiquitous before segments using the
version 4 format start getting generated, otherwise older pinot servers will not be able to read
segments containing version 4 columns. Therefore, reader support should be released along
with writer support behind a feature flag in version 0.9.0. The feature flag will be removed in the
subsequent release, with a mandatory upgrade via 0.9.0 to 0.10.0. The current format is also
used for mission critical applications by numerous Pinot users, and these users must be given
the option to evaluate and accept the new format before making it the default.

Rejected Variations

Dynamic buffer allocation

The buffer could be dynamically allocated to create larger chunks than was targeted if larger
data is encountered. Instead, a buffer of the target chunk size will be allocated. When a
record doesn't fit in it, a flush happens - the buffer is compressed and written to disk. If after
a flush happens the value still doesn't fit, the value itself is compressed and written to disk
as a chunk. This avoids excessively sized lingering buffers because a large value was seen
once. However, this leads to a failure mode where all values are larger than the target
uncompressed chunk size, and we create as many chunks as there are documents. This
case should be very rare, but should be catered for by a configurable buffer size, but a good
value should be chosen as the default.

Store maximum size of uncompressed chunk in header to allow readers to
size decompression buffers

The size of the target uncompressed chunk size is stored in the header, but not the size of the
largest chunk size. When values larger than the target uncompressed size are encountered,

they are compressed directly, so the target chunk size is not guaranteed to be large enough for
use within a pool of buffers decompression purposes.

If there are few enough chunks and access is sequential, chunk decompression should be rare
for readers. Optimising memory allocation for decompression is likely a symptom of doing too
much decompression because there are too many chunks or dealing with chunks that are too
large. If most chunks are 1MB uncompressed and a NMB chunk is encountered just once, the
size of the buffer pool would be oversized by a factor of N, so buffer sizing based on the
maximum value leads to bloat; inefficient usage of RAM increases operating costs.

Instead, the reader should take the target chunk size from the header and preallocate buffers of
that size if deemed necessary. On the exceptional event that this buffer is not large enough
because a huge raw value was encountered, a large buffer can be allocated just in time for
decompression. This could be detected by recovering the decompressed size from the
compressed chunk by extending the Decompressor abstraction to expose the capabilities of
the compression libraries.

This leads to an identical failure mode to above, where most chunks exceed the target
uncompressed chunk size. In this case, the target uncompressed buffer size should be
increased to match the needs of the use case, with a good default.

	Goals
	Non-Goals
	
	Problem
	Current Format
	Advantages of the current format
	Disadvantages of the current format

	Observations
	Proposal
	Rejected Variations
	Dynamic buffer allocation
	Store maximum size of uncompressed chunk in header to allow readers to size decompression buffers

