
A Guide for Transitioning from Python to C++
Jillian Tang & Ethan Chi

C++ is a very different language from Python, but some simple principles can help guide
you through the changes! Let’s have a look.

Semicolons, Parentheses, and Braces? Oh my!
Curly Braces {}

● Curly braces ({ }) are almost exactly equivalent to Python indentation.
● Use them for if/else/while statements, function definitions

void function(int a, string b) {
if (a == 1) {

cout << b << endl;
}

}
● Like in Python, we usually indent inside brackets.

Conditions
● An if/else statement or while loop requires parentheses around the condition:

if (a == 1) {
cout << b << endl;

}
● And is represented by &&, or is represented by ||, and negation is represented by !.

if ((a == 3 && b == 2) || c != 1) {
cout << “either a equals 3 and b equals 2 or c does not equal 1”;

}
● Elif is replaced by else if. (Actually, elif is a shortened version of else if.)

if (a == 1) {
cout << “One” << endl;

} else if (a == 2) {
cout << “Two” << endl;

}

Semicolons
● You need a semicolon at the end of every non-control statement.

○ Setting a variable:
int i = 0;

○ Calling a function
doSomething(a, b);

● Do not put a semicolon at the end of a control statement.
○ If and else:

if (i == 1) { // no semicolon here!
cout << “Test” << endl;

} else {
cout << “else” << endl;

}
○ While statements:

while (a == 1) {
cout << a << endl;

}
● Do not put a semicolon at the end of a statement beginning with a #.

#include “strlib.h”

Types
C++ is a typed language, which means that you sometimes need to explicitly say what type
something is.

● A type is a fundamental kind of value. Examples include int, string, char (single
character, not in Python), double (equivalent of Python float)

● You must explicitly state the type when declaring a variable, but not while using it
after that.
int i = 0;
i = i + 2; // no type needed here

● Function parameters must also have types; also, every function must include a
return type. If the function doesn’t return anything, it has return type void.
However, you don’t have to include the types when calling the function.
int function(int a, string b) {

return a + 2;
}
void function2(int a, string b) {

cout << b << a + 2 << endl;
}
function(3, “test”);

Syntax Differences
Here are some common things that differ from C++ to Python.

● Single-line comments are made using //. Multi-line comments are made using /* to
start and */ to end.
/* This function takes in an integer and a string.
* It returns the value of the integer plus 2.
*/

int function(int a, string b) {
return a + 2; // does the adding

}
● To loop through a range of values, instead of using range as in Python, you define a

variable and increment it through a for loop:
for (int i = 0; i < 10; i++) {

cout << i << “ ”;
} // prints out 0 1 2 3 4 5 6 7 8 9

● To loop through a collection (like a list in Python), you use the for-each syntax:
for (int i : numbers) {

cout << i << “ “;
} // prints out the contents of numbers

● To print out something, use cout << followed by what you want to print (and <<
endl if you want a new line). You can directly pass in variables through this, but you
must separate different values with <<.
cout << “hello world” << endl;
string name = “Mary”;
int age = 20;
cout << “My name is “ << name << “ and my age is “ << age << endl;

● The ++ operator is equivalent to += 1 (and similarly for --):
int i = 3;
i++;
cout << i << endl; // prints out “4”

● If you call a function before its definition in your code, your C++ compiler will think
it doesn’t exist. Use forward declarations (aka function prototypes) at the beginning
of your code to let it know that these functions exist in your code.
void function2(int a, string b);
int function(int a, string b) {

function2(a, b); // now you can call this before writing
return a + 2; // function2

}
void function2(int a, string b) {

cout << b << a + 2 << endl;
}

Important Functions
A lot of important functions that you might use in Python aren’t available in C++ by
default. Instead, you have to #include the appropriate library at the top of your file. Here
are some examples:

● stringSplit splits a string by a delimiter (like Python .split())
#include “strlib.h” // put this at the top of your file!
string data = “a,b,c”;
Vector<string> components = stringSplit(data, “,”);

● toLowerCase converts a string to its lowercase version (see also toUpperCase)
[from “strlib.h”]:
string data = “ABC”;
cout << toLowerCase(data) << endl; // prints abc

● getLine gets a string from the user (see also getInteger) [from “simpio.h”]:
string data = getLine(“Please enter some text: ”);

● getYesOrNo gets a boolean from the user [from “simpio.h”]:
bool yesOrNo = getYesOrNo(“Yes or no? ”);

● startsWith(str, prefix) checks whether a string begins with the prefix (see also
endsWith) [from “strlib.h”].

● stringToInteger(str) and integerToString(int) do the appropriate
conversions, as do stringToReal(str) and stringToReal(d) [from “strlib.h”].

● randomInteger(low, high) returns a random integer between low and high,
inclusive [from “random.h”].

● str.find(b) checks if the character or string b is found in str and returns its index
if it’s found, or string::npos otherwise.
string a = “pineapple”
cout << a.find(“apple”) << endl; // prints 4
if (a.find(‘p’) != string::npos) { // equivalent of ‘if ‘p’ in a’

cout << “p is in string a!” << endl;
}

To view more about Stanford libraries, check out the documentation:

https://web.stanford.edu/dept/cs_edu/cppdoc/

https://web.stanford.edu/dept/cs_edu/cppdoc/

