
Scope: this document collects requirements for a backup/restore/clone service, as a spin off of
initial conversation in https://github.com/krujos/data-lifecycle-service-broker/issues/3
See opensource implementation available into
https://github.com/Orange-OpenSource/service-db-dumper

Motivation
Goal

Backup/Restore use-cases
Clone / Create from dump use-case

Requirements
Requirements for a db dump capability
Requirements for an import dump capability into a new service instance

Proposed design
Export capability through service-broker [de]provision operation(s)
Import capability through service-broker update operation

Under the hood
Other considered design alternatives

Import capability through dataservice service-broker [de]provision operation(s)
Under the hood

Import capability through a dashboard/REST api on the dump service broker
Import request
Get status on a requested import task

Extension of the Service Broker API

Motivation

Beyond the HA/durability properties of some of the db services, CloudFoundry users want to be
able to backup/restore their db content to cope with application or operator-generated mistakes
applied on the data. Also, there is a need to clone a data set in order to reproduce problems
observed in production in a dev environment, or to share test data sets among team members.
Last, there is the use-case of transferring a data set among different providers of a compatible
service (e.g. various mysql providers avaiilable in a public Paas).

Currently, it is a common case for data services to be exposed on private addressing schemes
in CF-managed services , preventing data services endpoints to be generally accessible from 1

outside CF, typically from CF users desktops. Additionally the CF v1 “tunnelling to services”
feature has not yet been restored with CF v2, nor diego. To fulfill the use-cases above, Cf users
have therefore to bind their app to a web-based db client (such as phpmyadmin) and try to
perform db dumps from there. This is however a tedious and unreliable process.

1 See http://docs.cloudfoundry.org/concepts/security.html#system-boundaries

1

https://github.com/krujos/data-lifecycle-service-broker/issues/3
https://github.com/Orange-OpenSource/service-db-dumper
http://docs.cloudfoundry.org/concepts/security.html#system-boundaries

Goal

As a first step, this document is describing a basic full data dump into an S3 bucket, which may
be applicable to stateful data services providing the ability to dump their content as one or
multiple files, and to re-import them. This may not be applicable to large data sets for which
performance impacts of such dump would rather require incremental dumps, or leverage
snapshot capabilities of the underlying storage.

Backup/Restore use-cases

One use-case for the backup/restore plan is:

●​ before deploying a new version of an application, app-ops want to perform a backup of
the db (i.e. the db service instance)

●​ the new version of the application is deployed which alters the db schema and db
content.

●​ if the deployment shows regressions, they can restore the backup to the service
instance, and rollback to initial app version.

Let’s assume the following deployment scenario:
●​ a maintenance window is planned with users told the app will be unavailable during

maintenance
●​ public route is unbound from app “N” and bound to an app “M” displaying maintenance

page.
●​ app “N” is potentially stopped if this is required for data consistency of the dump.
●​ a dump of the bound db service instance is requested
●​ the version N+1 is pushed as a second app “N+1”, and bound to the same db service

instance.
●​ the app “N+1” is tested with a private route.
●​ If tests are OK, public route is bound to app N+1. N+1 version is live
●​ If tests are KO, and rollback is decided:

○​ a reimport of the dump is requested into the db service instance
○​ app N is potentially started (if stop was required for data consistency)
○​ public route is bound to app N. N version is live.

Clone / Create from dump use-case

Another use-case is the need to clone a data set, to reproduce problems observed in production
in a dev environment, or to reuse reference test data sets among successive integration test
steps.

2

Requirements

Requirements for a db dump capability

A requester requires a full dump of a source db represented by a source service instance.

Before performing the dump

A requester is checked for control/ownership over the source db, (e.g. has space manager role
within the space where the source service instance is created)

A requester may potentially require to anonymize the dump content, if usage of the dump is
known in advance and secrets need to be prevented from being included in the dump.

During the dump:

The potential impact on the source db should be documented as to leave responsibility to the
requester to choose the appropriate maintenance window to request this dump.

Some dumps logs of the dump process are made available to the requester to understand
failures, slow responses of the dump. However, sensitive credentials are not present in these
logs.

The requester has the ability to interrupt and cancel a dump process which is taking too long
and exceeds the planned maintenance window.

The dump request completes with a success or failure status. In case of a failure, transient
resources are cleaned up (in order to avoid leaks)

After the dump completion

The requester retains ownership and control over this dump (for easing housekeeping and
managing confidentiality): the dump is exposed as a service instance, and therefore can be
listed, inspected, deleted, and potentially charged/billed for the life duration of the dump. Also
the usual CF features (e.g. sharing a service instance among spaces, service instance audit
events) would normally apply to the dump.

The requester can access the dump in read-only mode using machine-readable credentials, or
a dashboard url for humans (e.g. to check the anonymisation process was effective).

3

Requirements for an import dump capability into a new service instance

A requester requires to import a source dump into a target service instance.

Before the import:

The requester is checked for control/ownership over the source dump

During the import:

Some dumps logs of the new service instance creation and import process are made available
to the requester to understand failures, slow responses of the import. However, sensitive
credentials are not present in these logs.

The requester has the ability to interrupt and cancel an import process which is taking too long.

The import request completes with a success or failure status. In case of a failure, transient
resources are cleaned up (in order to avoid leaks).

Proposed design

Export capability through service-broker [de]provision operation(s)

A “data-service-dump” service is exposed in the marketplace, with a plan for each support db
dialect/protocol

$ cf m

service

plans description

p-mysql

100mb,
1gb

MySQL databases on demand

data-service-dump mysql, pg,
mongo

Db dumps on demand (currently supporting mysql, pg,
mongodb)

$ cf s

4

name service plan bound apps last operation

sourcedb p-mysql 100 mb spring-travel create
succeeded

A requester requires a full dump of a source db represented by a source service instance name
“sourcedb”, by invoking the dump service, specifying the source service instance name into
arbitrary params,and potentially an anonymisation spec (similar to data-anonymization-dsl)

$ cf cs data-service-dump mysql dump-before-upgrade -c '{"source":”sourcedb”}'
Creating service instance dump-before-upgrade in org orange / space elpaaso as gberche
… in progress
connecting to db instance… OK
starting dump… OK
1000 statement dumps...OK
1000 statement dumps...OK
Dump complete.
OK

TODO: precise the mechanism by which the request is granting the service broker permissions
to act on his behalf, rather than use an CC admin account. 2

The service creation is async, so the dump process can be stopped with a delete request. 3

$ cf s

name service plan bound apps last operation

dump-before-up
grade

data-service-du
mp

mysql create
succeeded

sourcedb p-mysql 100 mb spring-travel create
succeeded

3 Currently, the service broker does not allow for a delete/deprovision request while a provision request
has not completed. See http://docs.cloudfoundry.org/services/asynchronous-operations.html#blocking

2 See discussion in autosleep service proposal for a potential UX and future enhancements to this flow

5

https://github.com/sunitparekh/data-anonymization/blob/master/examples/whitelist_dsl.rb#L33
http://docs.cloudfoundry.org/services/asynchronous-operations.html#blocking
https://docs.google.com/document/d/1tMhIBX3tw7kPEOMCzKhUgmtmr26GVxyXwUTwMO71THI/edit

The service instance exposes an HTTP endpoint to potentially request other operations from the
dump. The HTTP endpoint is communicated through the dashboard URL.

$ cf s dump-before-upgrade

Service instance: dump-before-upgrade
Service: data-service-dump
Plan: mysql
Description: MySQL, Pgsql, Mongo db dumps on demand
Documentation url:
Dashboard: https://….

Last Operation
Status: create succeeded
Message:

When the dump service instance is bound to an application, the service broker bind endpoint
returns read-only credentials to the S3 bucket, allowing an app to programmatically access the
dump.

Limitation with this approach:

●​ it is not possible to interrupt interactively a dump which is taking too long to complete
through the service broker API.

6

Import capability through service-broker update operation

The same “data-service-dump” service used to trigger a dump, also exposes an “update”
operation supporting arbitrary params which is used to request the import of the dump into an
existing target service instance.

$ cf m
[...]

service

plans description

mongodb26 free MongoDB 2.6 service for application development and
testing

p-mysql 100mb,
1gb

MySQL databases on demand

cleardb spark,
boost*,
amp*,
shock*

Highly available MySQL for your Apps.

data-service-dump mysql, pg,
mongo

Db dumps on demand (currently supporting mysql, pg,
mongodb)

A requester requires to import a source dump instance into an existing target service instance
by identifying the existing target db to import into through arbitrary service params. The target
db is identified by the name of the corresponding service instance in the same space . 4

4 Further refinements will extend this to support target service instances in different spaces or org,
provided that they are accessible to the requester

7

$ cf s
Getting services in org orange / space elpaaso as gberche...
OK

name service plan bound apps last operation

sourcedb p-mysql 100 mb spring-travel create
succeeded

dump-before-up
grade

data-service-du
mp

default create
succeeded

dump-after-faile
d-upgrade

data-service-du
mp

default create
succeeded

clone-before-up
grade

p-mysql 100 mb spring-travel create
succeeded

$ cf update-service dump-before-upgrade -c { target-db=clone-before-upgrade, ...}
Updating service instance clone-before-upgrade in org orange / space elpaaso as gberche…
… Importing dump into clone-before-upgrade mysql db … SUCCESS
OK

A refinement to this approach is to provide a CLI plugin to interactively prompt compatible target
db service instances (e.g. in all accessible spaces by the current user).

Under the hood, the data-service-dump service brokers fetches the access credentials of the
specified target db, and imports the dump content into it, overriding previous data.

To restore an dump into a new db instance, the user has to provision a new fresh target db
service instance.

Under the hood

From the paas-ops point of view, this means deploying a spring-boot app with the following env
vars, and registering it as the “data-service-dump” service broker:

8

●​ cc account with necessary credentials to be able to look up dumps service instances in 5

spaces
○​ cc login
○​ cc password

●​ S3 bucket credentials to read the dumps (e.g a bound S3 service instance)

When the update-service is called to restore the dump into a target db, the data-service-dump
service broker requires the creation of service keys to the target db specified in arbitrary
params. These service keys are transiently created in the space associated with the target db
service instance, and deleted upon completion of the dump import process.

Limitations in this approach:

●​

5 See discussion in autosleep service proposal for a potential UX to have the broker act on behalf of the
requester user, and therefore avoid needing to have cc.admin scopes to access anything else than the
shadow space(s).

9

https://docs.google.com/document/d/1tMhIBX3tw7kPEOMCzKhUgmtmr26GVxyXwUTwMO71THI/edit

10

Other considered design alternatives

Import capability through dataservice service-broker [de]provision

operation(s)

A “data-service-importable” service is exposed in the marketplace for each stateful service, and
acts as a facade (i.e exposing the same catalog, and returning same credentials and dashboard
url as the original data service). This face service is supporting additional arbitrary params in the
create and update requests, to respectively create a new data service from a dump, or update
an existing service instance from a dump.

The following marketplace example shows striked through original data services to illustrate the
fact that a CF operator might choose to only expose the enhanced facade services as to avoid
user confusion with similar offers.

$ cf m
[...]

service

plans description

mongodb26 free MongoDB 2.6 service for application development and
testing

p-mysql 100mb,
1gb

MySQL databases on demand

cleardb spark,
boost*,
amp*,
shock*

Highly available MySQL for your Apps.

p-mysql-importable 100mb,
1gb

MySQL databases on demand, optionally
created/updated from dumps

cleardb--importable spark,
boost*,

Highly available MySQL for your Apps, optionally
created/updated from dumps

11

amp*,
shock*

A requester requires to import a source dump instance into a new target service instance by
identifying the dump to import through arbitrary service params. This results into a new service
instance, whose content is initialized with the source dump. This assumes the source dump and
new instances are in the same space.

$ cf s
Getting services in org orange / space elpaaso as gberche...
OK

name service plan bound apps last operation

sourcedb p-mysql-importa
ble

100 mb spring-travel create
succeeded

dump-before-up
grade

data-service-du
mp

default create
succeeded

dump-after-faile
d-upgrade

data-service-du
mp

default create
succeeded

$ cf cs p-mysql-importable 100mb clone-before-upgrade -c {
source-dump=dump-before-upgrade, ...}
Creating service instance clone-before-upgrade in org orange / space elpaaso as gberche...
OK

The service p-mysql-import broker receives the provisioning request with the org, space
params. Under the hood, in a system space, with a specific CC account, it asks the creation of
a “p-mysql” instance with plan “100mb”, and returns the status to CC.

The service creation and dump import is async, so it can be interrupted with a service instance
delete request.

$ cf s
Getting services in org orange / space elpaaso as gberche...

12

OK

name service plan bound apps last operation

sourcedb p-mysql-importa
ble

100 mb spring-travel create
succeeded

dump-before-up
grade

data-service-du
mp

default create
succeeded

dump-after-faile
d-upgrade

data-service-du
mp

default create
succeeded

clone-before-up
grade

p-mysql-importa
ble

100 mb create
succeeded

Alternatively, to re-import a source dump into an existing target service instance, the
update-service can be used. This translates into the service broker to receive an update service
instance request

$ cf update-service source-db -c { source-dump=dump-before-upgrade, ...}
Updating service instance source-db in org orange / space elpaaso as gberche...
OK

Under the hood

From the paas-ops point of view, this means deploying a spring-boot app with the following env
vars, and registering it as the “data-service-importable” service broker:

●​ shadow-space: shadow space into which original service-instance will be created
●​ cc account with necessary credentials to be able to look up dumps service instances in 6

spaces and instantiate service instances in the shadow space).
○​ cc login
○​ cc password

●​ target-service-type (e.g “p-mysql”)
●​ S3 bucket credentials to read the dumps (e.g a bound S3 service instance)
●​ A persistent store (shared with the

6 See discussion in autosleep service proposal for a potential UX to have the broker act on behalf of the
requester user, and therefore avoid needing to have cc.admin scopes to access anything else than the
shadow space(s).

13

http://docs.cloudfoundry.org/services/api.html#updating_service_instance
http://docs.cloudfoundry.org/services/api.html#updating_service_instance
https://docs.google.com/document/d/1tMhIBX3tw7kPEOMCzKhUgmtmr26GVxyXwUTwMO71THI/edit

When the “clone-before-upgrade” service instance is bound to an app, the p-mysql-importable
service broker requires the creation of service keys to the shadow p-mysql service instance
(create-service-key), and returns it as credentials of the “clone-before-upgrade” service
instance.

Symmetrically, on unbinding the p-mysql-importable service broker translates this into a
delete-service-key to p-mysql service.

Finally, a delete request on the “clone-before-upgrade” results into an underlying delete request
to the p-mysql shadow service instance.

Limitations in this approach:

●​ lack of consistency with original source service type: imported dbs from dumps don’t
have the original type (e.g. p-mysql), which may confuse a bit inventories, usage reports
and billing. This may somewhat be overcome by entirely removing the original data
service (p-mysql) from the marketplace of private CF instances (TBC public CF instance
don’t yet seem allow to restriction of marketplace per orgs/spaces)

●​ wrapping (p-mysql into p-mysql-importeable) implies a tight coupling between the
original services and the import/export service). How would the import/export service
catalog (p-mysql-importeable) would be updated to match the original service (p-mysql)
?

○​ What kind of changes:
■​ catalog changes

●​ service plans
■​ service binding changes ?

●​ dashboard url
○​ It is a manual task left to the CF operator ?
○​ Can this be automated ?

■​ How to detect changes in the catalog of the wrapped service ?
●​ [Upcoming CF Notifications on service broker changes]
●​ Regular polling

■​ How to update the wrapped service ?
●​

●​ quota enforcement: lack of a unique quota for p-mysql service whether directly
instanciated or instanciated from a dump. A user could instanciate 10 p-mysql instance
and 10 p-mysql-importeable instance. This may somewhat be overcome by entirely
removing the original data service (p-mysql) from the marketplace.

14

Import capability through a dashboard/REST api on the dump service broker

The dump service instance exposes a HTTP endpoint to request the import of the dump into an
existing compatible service instance. This may be exposed as a web ui (protected by an oauth
authorization) and asking

$ cf service dump-before-upgrade

Service instance: dump-before-upgrade
Service: data-service-dump
Plan: Default
Description: MySQL, Pgsql, Mongo db dumps on demand
Documentation url:
Dashboard: https://dump-service/dump-guid/

Last Operation
Status: create succeeded
Message:

The REST API exposes the following verbs

Import request

Request an import of a source dump into the specified existing target service instance, or into a
new service instance. The import, which is an async task, which can then be queried to check
its status, get execution logs, and potentially cancelled if too long.

POST /dump-importer? [update-target-service-instance-guid=] | (
create-target-service-instance-name= & create-target-space-guid)
where:

●​ update-target-service-instance-guid: [Optional] the guid of an existing compatible target 7

service instance (e.g. p-mysql) to import the source dump into. A temporary new service
key wil be requested to connect this instance and import the dump, before being deleted.
 8

8 Other alternatives could be to pass in a service binding instance (which contain credentials), however
this requires that the target service be bound. Otherwise, the access credentials themselves could be
passed in (e.g. mysql uri). This is simpler and restricts granted oauth access to the dump service broker
(e.g. to not mess up with another service instance than the specified one). However, this requires the
service key to pre-exist and discloses it to a 3rd party, and provides less isolation and traceability.

7 if omitted, the create-target-* params should be provided instead

15

●​ create-target-service-instance-name: [Optional] the name of a service instance to use in 9

creating a service into which the source dump will be imported
●​ create-target-service-name: [Optional] the name of a service to use in creating a service

into which the source dump will be imported
●​ create-target-service-plan: [Optional] the name of the service plan to use in creating a

service into which the source dump will be imported
●​ create-target-service-params: [Optional] a JSON formatted string holding the arbitrary

params to use in creating a service into which the source dump will be imported
●​ create-target-space-guid: [optional] the space guid into which a service instance will be

created, and into which the source dump will be imported. When omitted, the service
instance is created in the same space as the source service instance dump.

●​ HTTP Authorization: Bearer OAuth Token: OAuth token of the request to request a
service key for the specified service instance to import, user will be asked to grant the
cloud_controller.write scope

Returns:
Status code:

●​ 200,
●​ 403: insufficient authorization
●​ 404: no such update-target-db, target-service-name, target-service-plan,

target-space-guid
●​ 409: conflict, incompatible target (e.g. pg) with source dump (mysql)

Body: { import-process-task-id=123, error-details=’blabla’’ }

Get status on a requested import task

GET import-task/import-process-task-id?log_offset=bytes
where:

●​ log_offset=offset from start of logs to return. Allows paging of logs to not returned
previously displayed logs

Returns: 200, 404
Body: { status=in-progress|completed, next-log-offset=1024, log=’log importation started.
connecting to service instance, batch1 (10023 statements, 1024 bytes) sent… done’}

To ease consumption of the REST endpoint, a CLI plugin is provided, resulting in the following
UX

$ cf s
Getting services in org orange / space elpaaso as gberche...
OK

9 if omitted, the update-target-* params should be provided instead

16

name service plan bound apps last operation

dump-before-up
grade

data-service-du
mp

default create
succeeded

sourcedb p-mysql 100 mb spring-travel create
succeeded

target-db p-mysql 500mb create
succeeded

#update existing target instance
$ cf import-dump -d dump-before-upgrade -u targetdb
Importing dump ‘dump-before-upgrade’ into service ‘targetdb as gberche
6/2/2015 22:26:00: log importation started. creating service key for service instance 123456 as
gberche… done connecting to service instance, batch1 (623 statements, 1024,000 bytes)
sent… done
6/2/2015 22:26:10: batch2 (239statements, 1003,123 bytes) sent… done
6/2/2015 22:26:00: batch import done. deleting service key… done. dump import complete
OK

#restore dump into a new service instance to be created
$ cf import-dump -d dump-before-upgrade -cs targetdb p-mysql 100mb -c
'{"instance_size":m1.medium}'

Limitations/drawbacks of this approach:

●​ Requires the installation of a CLI plugin to request importation of a dump, or cloning of a
data service instance.

Extension of the Service Broker API

An alternative approach is to move these actions within the lifecycle of the service instance on
which you want to perform the actions.

Make the ability to perform actions such as “backup” or “restore” or “upgrade” a concept that CC
and Service Brokers understand.

`Actions` could be a new concept introduced to the API. Upon triggering an action from the CLI,
this is merely passed through to the service broker which executes the action in an async
manner and returns the result.

17

There could either be a list of pre-agreed actions we want to support, or we could increase the
complexity and allow service brokers to register a list of actions they support.

That action could be performing a dump of the database on that instance, using details
pre-configured either by the Operator at a service wide level or per app instance through the
dashboard by the application developer, such as the destination.

This could give way to a user flow more like

$ cf cs p-mysql standard my-db
<fill it with some data>

$cf list-actions p-mysql my-db
<this returns a list of actions that the service broker supports, such as

-​ take-snapshot = snapshot the existing data set now
-​ import-dataset = pass in the location as an arbitrary param of the tgz file to be restored

$ cf perform-action take-snapshot p-mysql my-db
<async this actions happens and returns true>

Advantages:

●​ more intuitive, it’s a first class citizen of the API and the CLI, supporting
○​ explicitly supported actions and their discovery
○​ cancelling async execution of long running actions (whereas cancelling is not yet

supported on current CUD operations of service broker API)
●​ Can start to get fancy and chain services. For example the app instance could be bound

to an anonymizer service which is passed the data after it’s exported and anonymized,
before being passed back to the service broker to store on S3.

Disadvantages:

●​ Requires changes to CC / SB APIs & CLI
●​ If the actions are directly implemented by the data service (say p-mysql) and not a

distinct service (say data-service-dump) then:
○​ The dumps (tgz) are not materialized as service instances, making their

management by end-user less explicit (request to delete, request to access it,
bind it to an app, billable service events)

○​ Only services supporting backups (say p-mysql) can be dumped, w.r.t. supporting
dumps for cups or existing public services (e.g. an online public RDS/cloudant
service in a public CF service)

18

	Motivation
	Goal
	Backup/Restore use-cases
	
	Clone / Create from dump use-case

	Requirements
	Requirements for a db dump capability
	Requirements for an import dump capability into a new service instance

	Proposed design
	Export capability through service-broker [de]provision operation(s)
	Import capability through service-broker update operation
	Under the hood

	Other considered design alternatives
	Import capability through dataservice service-broker [de]provision operation(s)
	Under the hood

	Import capability through a dashboard/REST api on the dump service broker
	Import request
	Get status on a requested import task

	Extension of the Service Broker API

