NOTE: this document is now outdated, the persistent buffering
has been implemented in OpenTelemetry Collector

OpenTelemetry Collector WAL Design Doc [Draft]

Issue: https://github.com/open-telemetry/opentelemetry-collector/issues/2285

Related work: https://github.com n-telemetr ntelemetry-collector/pull/301 7/fil
(Prometheus exporter WAL)

Requirements:

e the records are persisted to disk so in case the export fails and memory queue hits the
limit or collector is killed with a non-empty queue, data is not being lost

e when a record was successfully exported, it is removed from the WAL (or marked as
such via a tombstone)

e when OTC restarts, the existing records are loaded and added to the respectful send
queues (replayed)
there is a maximum allowed disk usage set; which is never exceeded (also see below)
when multiple exporters are configured, each record should be successfully sent only
once for each of them

e all signal types supported

Nice to haves:

e when maximum size is exceeded, the old records are overwritten with new ones or no
new records are accepted, depending on the configuration variable (similar to FluentD’s
overflow_action)

e the same like above, but also when less than X% of disk space is available (and/or less
than X MB)

e compress WAL data on disk

WAL in the context of pipeline

OpenTelemetry Collector architecture is built around the concept of pipelines, where a number
of receivers writes to a sequence of processors, which ultimately fans out data to a number of
exporters. Multiple pipelines can be defined for each of the signal (trace, metrics, logs). They
can share components (the same configuration will be used, though via a separate instance).

https://github.com/open-telemetry/opentelemetry-collector/issues/2285
https://github.com/open-telemetry/opentelemetry-collector/pull/3017/files
https://docs.fluentd.org/configuration/buffer-section
https://docs.fluentd.org/configuration/buffer-section
https://github.com/open-telemetry/opentelemetry-collector/blob/main/docs/design.md

Pipeline

Receiver 1
\ Exporter 1
Receiver 2 * Processor 1 [Processor 2 | -- | Processor N @ Exporter 2
Receiver N /
Exporter N

The processors always operate on the internal data model, while Receiver and Exporters
convert from/to accordingly.

It is worth observing that there are several processors which are recommended to be used in all
pipelines (especially when collector is run in gateway mode). This includes the batch processor
(which groups records together into larger batches) and memorylimiter (which stops accepting
data after too much memory is being used).

Additionally, exporters commonly use exporterhelper, which provides queued retry capability
among others. This allows to retry sending a given batch, if it failed due to server error or
timeout. The current implementation stores the batches in memory.

More recently, a filestorage extension was added into OpenTelemetry Collector Contrib. It is a
generic extension built on top of bbolt, which allows to store/load blobs using the local storage.

Alternatives for which component to include the WAL capability

Let’s consider components in which WAL capability could be located:

1. Receiver - this could be achieved via e.g. some sort of helper, perhaps after the
conversion to native format, though it's unclear when buffering capability would be
preferred in this component, as it's most disconnected from batching and receiving
response on the status of the export.

2. Processor - a separate “WAL” processor could provide the buffering for each signal,
accordingly. That would provide a clear separation, however it requires retrieving back
information from exporters if the operation was successful (currently, the processors are
following a “fire and forget” approach). Changing that would require more significant
effort.

Additionally, while it would limit the number of copies in each WAL when multiple
exporters are configured (as given record would be kept only once), the associated
information on which exporters failed and which succeeded would also need to be kept,
which may add to the complexity

3. Exporter - each exporter could handle WAL separately. This could be provided by
extending queued_retry helper. It simplifies the design considerably, as queued_retry
already knows the outcome of sending a given batch and has a memory-backed queue.
Conceptually, the queue would be backed by WAL rather than memory in such case.
Also, WAL can be configured more fine-granularly.

Additionally, the exporter internal API could be refactored or extended in a way that

https://github.com/open-telemetry/opentelemetry-collector/tree/main/processor/batchprocessor
https://github.com/open-telemetry/opentelemetry-collector/tree/main/processor/memorylimiter
https://github.com/open-telemetry/opentelemetry-collector/tree/main/exporter/exporterhelper
https://github.com/open-telemetry/opentelemetry-collector-contrib/pull/3087

provides a method that deals with marshaled data already, so no additional
serialization/deserialization would be required (however ToOtlpProtoBytes() has very low
latency).

Alternatives for disk storage implementations

1. filestorage extension could be leveraged for WAL purposes. Each batch would need to
be serialized and stored using a unique key, which might be based on timestamp (or
UuID).

2. An existing library for WAL purposes could be leveraged. This is e.g. done for
prometheusremotewrite WAL proposal, where tidwall/wal library is being leveraged.

3. Leverage diskqueue (as noted by David Ashpole)

4. Something else (e.g. SQLite?)

Other queues

Some processors, such as batchprocessor or groupbytraceprocessor are using currently
memory-backed queues. In the event of the collector process getting killed, the data present in
those queues would be lost. Hence, if the solution is going to provide WAL in exporter, there
should be a possibility to persist those queues as well. A common internal library could be
leveraged for persisting queue here and for the exporters.

Various concerns

Handling Prometheus data

Discussion at #3017 and wg-prometheus#9

Prometheus data have specific requirements on the order of data which limit the options on
solving WAL problem heer (hence the separate PR). However, it should be possible to use a
generic solution based on queued_retry, with a remark that number of consumers must be set
to 1.

|dentifying exporters (when multiple ones used)

It is anticipated that several exporters in each pipeline will be used. This might be challenging
when there are existing WAL's for no-longer existing exporters (and the other way around). Old
entries should be removed regardless if the exporter is configured or not. Each exporter needs
to be identified accordingly too. This can be achieved via its name in the pipeline. For example,
following pipelines:
service:

pipelines:

traces:

https://github.com/open-telemetry/opentelemetry-collector-contrib/pull/3087
https://github.com/open-telemetry/opentelemetry-collector/pull/3017/files
https://github.com/tidwall/wal
https://github.com/nsqio/go-diskqueue/blob/master/diskqueue.go
https://github.com/open-telemetry/opentelemetry-collector/tree/main/processor/batchprocessor
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/processor/groupbytraceprocessor
https://github.com/open-telemetry/opentelemetry-collector/pull/3017
https://github.com/open-telemetry/wg-prometheus/issues/9

receivers: [otlp]

processors: [memory_limiter, batch]

exporters: [otlp, zipkin]
metrics/foo:

receivers: [prometheus]

processors: [batch]

exporters: [otlp]

would yield following exporter ids used in WALSs:
e traces#otlp
e traces#zipkin
e metrics/foo#otlp

	NOTE: this document is now outdated, the persistent buffering has been implemented in OpenTelemetry Collector
	OpenTelemetry Collector WAL Design Doc [Draft]
	WAL in the context of pipeline
	Alternatives for which component to include the WAL capability
	Alternatives for disk storage implementations
	Other queues
	Various concerns
	Handling Prometheus data
	Identifying exporters (when multiple ones used)

