Outfit of the Day (https://github.com/Akhil-Kokkula/OutfitOfTheDay)

Authors: Jeremy, Akhil, Prathmesh, and Zuizz

Purpose: Everyone spends energy in choosing the best oultfit for a given occasion. However, in
many cases, people dedicate too much time into deciding their outfits for a given day. In
addition, people often forget to factor in certain events in their day, the weather, and other
features when determining their outfits, resulting in regret and unneeded stress. Through Outfit
of the Day, a given user will be able to utilize weather and calendar information to create smart
outfits, serving as a solution.

API Key Setup:

Copy these keys into local.properities:
vis 4

manifests
kotlin+java
JEVE]
> [2res
res
e Scripts

build.gradle
guard-rt. 11

gradle-wrag

If there are problems loading the variables, make sure to sync the gradle files and rebuild the
project:

Tools
Git
Window
Help

lodule to App Engine.
uild Performance

Clean Project

Rebuild Project

Authentication (SignUpFragment.kt and LoginFragment.kt)

Create Account

The SignUpFragment.kt and LoginFragment.kt provides authentication for the app.
Authentication is powered by Firebase Authentication.

1. createAccount Function
This function in the SignUpFragment.kt creates the user’s account with email and password

input text using Firebase Authentication.
private fun crec nt () {

.toString () .t)
rdInputF d.text.toString () .tz

if (email = "" ‘l paSSWOId — nu) {
Toast.makeText (getContext (), getString(R.string.s

.show () ;
return

auth.createUserWithEmailAndPassword (email, password)
.addOnCompleteListener { task ->
if (task.
Log.d (TAG,

goToLoginFrag

2. login Function
This function in the LoginFragment.kt signs the user in using Firebase Authentication by making

sure the user has an account.
o e fun logIn() {

1 email mailInputField. text.toString () .trim()
val password = p rdInputField. text.toString () .t

auth.signInWithEmailAndPassword (email, password)
.addOnCompletelistener { task ->
if (task.

Log.d (T

goToHomeFragment ()
{

Toast.makeText (getContext (), getString(R.string. fa
T) .show ()

Log.e (TAG, "could not log in user", task.except

Home Frament

After the user logs into the application, they will be redirected to the home fragment which
serves as the application’s landing page. The landing page displays the user’s username,
weather data, and wardrobe statistics.

1. Welcome Message

This fragment, like many, captures the user’s username by getting an instance of their Firebase
authentication account. With this information, the application fetches the username of the user,
displaying it on the application.

2. Weather Information

Upon landing on the landing page, the user is prompted to allow the application to access

location data via device permissions if not already allowed. Once the permissions have been
granted, a coroutine is set and passes the user’s location data to the Tomorrow.io API. Upon

receiving the response, our application not only stores the temperature, but also the type of
weather (sunny, cloudy, heavy rain, etc.). This information is then used to update the Ul of the
home fragment, showcasing the weather information.

&>

e e
. . . Llon 1‘1” (i)s] 1"[
Loading weealher inlommalbion. . loudly. 65.0°F

3. Wardrobe Distribution Chart

When the user reaches the landing page, the user’s firebase authentication account is used to
fetch a count of each category of clothing they have. Using the count of each category, the
percentage of clothing in each category is calculated. Using these percentages, a pie chart is
displayed.

AddOutfitFragment.kt
126 & & @
Outfit of the Day

126 & & @
Outfit of the Day

NEERE

Blue

No brand or text detected

Q + Vo Q + Bt wai
Home Add Clothes Generate Outfit Wardrobe Home Add Clothes Generate Outfit Wardrobe

This fragment allows users to take a picture of their clothing and Google Cloud Vision will
generate what type of clothing item it is, the color, and text/brands. From there, the user will
have to confirm it is correct and then add it to their wardrobe. Users can also manually input the
clothing item. Moreover, the user can modify an existing clothing item which will be done by
clicking on the item and holding on until a “modify” popup occurs in the wardrobe fragment.

1. getClosestColorName function

Since Google Cloud Vision returns the color of the picture as RGB, we need to convert this for
easier readability for the user. We can do this by calculating the Euclidean distance between a
given RGB color and predefined colors to determine and return the closest color name.

g: Int, b: Int): String {
{ color ->

+ (color.g - g) * (color.g - g) +

2. modifyOutfitData function

Allows the user to modify existing clothing items from their account. In the function, it would
check for the user id and then take in arguments the label, color, and branch which is passed
from the wardrobe fragment. Moreover, it will change the button text from “add to fragment” to

“modify clothing item.” By clicking the button, it will modify the existing item on Firebase.
[or > fun modifyOutfitData (itemId: String) {
1 userId = FirebaseAuth.getInstance () .

(userId == null) {

Toast.makeText (c = er not lo

val label = editTex t.toString() .t
1 color ‘ g toString ()
t.toString ()

| | color.
null) {

val imageBase64 = encodelmageToBase64 (capturedImageBitmap!!)

val category = getCategoryFromlLabel (label)

outfltUpdates = mapOf (
o label,
color,
brand,
to category,
4™ to imageBaseb64

val outfitRef =
FirebaseDatabase.getInstance () .getReference ("users/SuserId/outfits/SitemId")

outfitRef.updateChildren (outfitUpdates) .addOnCompletelistener { task ->
(task. CC
Toast.makeText (cont t Outfit updated succ sfully!"
.show ()

Toast.makeText (

.show ()

3. analyzelmage Function

The analyzelmage function processes an image to identify clothing-related information. It
compresses the image, converts it to a Base64 string, and sends it to the Google Vision API for
analysis, requesting the detection of labels, logos, text, and colors. When the API returns
results, the function filters and extracts useful details such as clothing types and brands, and
identifies the dominant color in the image. These results are then displayed in the app, helping
users quickly categorize and describe their clothing items without manual input. The challenge
that we faced here was that Google Cloud Vision did not always return the most accurate
information. Although it did offer a confidence score, selecting the highest confidence was not
always the best path. For example, when showing a picture of a shirt, the API would return
“t-shirt (65%)” and “pants (80%).” Therefore, we have decided to allow the user to ultimately

deC|de the inputs after getting “suggestions” from the API.
i alyzeImage (imageBitmap: Bitmap) ({
visionService = setupRetrofit ()
1 byteArrayOutputStream = ByteArrayOutputStream()
imageBitmap.compress (Bitmap.CompressFormat , byteArrayOutputStream)
val base64Image = Base64.encodeToString (byteArrayOutputStream.toByteArray (),
Base64d.])

val request = VisionModel.VisionRequest (
1istOf (
VisionModel.AnnotateImageRequest (

image = VisionModel.Image (content = base64Image),

features = 11stOf(
VisionModel.Feature (type

"LABEL DETECTION", maxResults

VisionModel .Feature (type "LOGO DETECTION", maxResults

VisionModel.Feature (type "IMAGE PROPERTIES", maxResults =

VisionModel .Feature (type "TEXT DETECTION", maxResults = 5)

visionService.annotateImage (request) .enqueue (object
retrofit2.Callback<VisionModel.VisionResponse> {
override fun onResponse (call:

retrofit2.Call<VisionModel.VisionResponse>,

retrofit2.Response<VisionModel .VisionResponse>)

response:

{

if (response.isSuccessful) {
response.body () ?.responses?.firstOrNull ()?.let {
setPrettyPrinting () .create ()

"Vision API Response:

val gson = GsonBuilder() .
Log.d ("AddOutfitFragment",

S{gson.toJdson (it) } ")

val descriptions = it.labelAnnotations?.map { label ->

label.description. toLowerCase (Locale.ROOT)

}2.filter { desc ->
allowedClothingTypes.any { type -> type.equals (desc,

ignoreCase = true) }
}?2.joinToString (", ")

= it.logoAnnotations?.map { logo ->

val brandNames =
logo.description }?.joinToString(", ")

val textDescriptions = it.textAnnotations?.map { text ->
" ")

text.description }?.j0inToString

val dominantColorInfo =
{ color ->

it.imagePropertiesAnnotation?.dominantColors?.colors?.maxByOrNull

color.pixelFraction }
= dominantColorInfo?.color?.let { color

val closestColorName =

->
color.green, color.blue)

getClosestColorName (color.red,

"No color detected"

tLabel.setText (descriptions ?: "No label

lor.setText (closestColorName)

1.setText (1istOfNotNull (brandNames,

textDescriptions) { "No brand or text detected" })

Log.e ("A utfitFragment", "API

S{response.errorBody () ?.string () }")

Toast.makeText (c

S{response.code () }", Toast.L

}

overri fun onFail
t: Throwable) {
Toast .makeText (c
Toast.) .show ()

)

Outfit of the Day

Weather Information Added!

Most Important Event for Today

going to the gym

Duration of Time Outside (hours)

2

ey o A
Add Clothes ~ Generafe Outfit Waidrobe

ure (call:

retrofit2.Call<VisionModel.VisionResponse>,

"API reque failed: ${t.m

Outfit of the Day

Weather Information Added!

Most Important Event for Today

going to the gym

Duration of Time Outside (hours)

2

.

et i
Add Clothes ~ Generafe Outfit

A
Wardrobe

This fragment allows users to generate an outfit from their wardrobe based on the user’s
occasion and duration of the occasion. The user can also load their google calendar (and other
features) for more context of the user’s day.

1. generateOutfitAction Function
This function is the driver for the generate outfit action. A user can generate an outfit only once
the user has entered their occasion, duration for occasion, and the weather information is
added. Some challenges for this function was handling asynchronous code correctly for good
user experience.
oriv fun generec utfit on {

t.toString() == "") {

xt, getString(R.string.g

irationInputText. text.toString() == ""
durationInputText. .toString() . t
Toast .makeText (Xt
getString (R.string

>t == null) {
getString (R.string.g

ingIndice

. V1S1 View. V.
getHourlyWeatherData (

or
val aiTextStrBuilder = StringBuilder ()
aiTextStrBuilder.append ("You are a fashiorn
full outfit for the day. ")
aiTextStrBuilder.append ("Here
and please y
"item -NvcC

"item

"item
Casual\n\n")
aiTextStrBuilder.append
aiTextStrBuilder.append (hourly’l

aiTextStrBuilder.append

"The most importan >ven of the user's

aiTextStrBuilder.append toString())

(

(
aiTextStrBuilder.append ("\n\n")

(

(

(

"\ N\

aiTextStrBuilder.append

aiTextStrBuilder.append ("The it] for the user today:\n")

(
aiTextStrBuilder.append (st
aiTextStrBuilder.append ("\

("0

aiTextStrBuilder.append ("Us

fetchDataFromDatabase { items ->

wardrobelList = items
for (clothingItem in items) {
Log.d ("GenerateOutfitFragment", "item S${clothingItem.id}:
S{clothingItem.label}, S${clothingItem.color}, S${clothingItem.brand}")
aiTextStrBuilder.append("item ${clothingItem.id}:
S{clothingItem.label}, ${clothingItem.color}, S${clothingItem.brand}\n")
}

aiTextStrBuilder.append ("\n\n")
aiTextStrBuilder.append ("Please generate an outfit for me")

val aiTextStr = aiTextStrBuilder.toString ()
printlin("will send to ai")
println(aiTextStr)

sendAndReceiveMessageFromClaude (aiTextStr) { outfitAIResponseStr ->
val regex = Regex ("""item ([\w—=]+):""")
val clothingIds = outfitAIResponseStr
.split("\n")
.filter { it.startsWith("item") }

.mapNotNull { regex.find(it)?.groupValues?.get (1) }
printlin(clothingIds)

val outfitImages = mutableListOf<ClothingItem> ()
wardrobelist.forEach { item ->
if (item.id in clothingIds) {
outfitImages.add (item)

GlobalScope. launch (Dispatchers.Main) {
loadingIndicator.visibility = View.GONE
outfitGalleryAdapter.updatingOutfitList (outfitImages)
outfitPhotoGallery.scrollToPosition (0)

2. Prompt Engineering
We prompt engineer the text sent to Claude API by specifying its role and expected output

format.
aiTextStrBuilder.append("You are a fashion stylist and
full outfit for the day. ")

format you need
provide and please only answer in this format:\n" +
(fh: T-shirt, White

"item vcyBYuib5alz-UH7Ghy: Jeans, Light Blue,

"item -NvcyBYuib5alz-UH6Ynh:

"item

-NvcyBYuib5alz-UH5Gf1l:

Casual\n\n")

3. Claude API Text Input

We then share today’s weather information during the duration of the occasion, the user’s
itinerary from their Google Calendar via the API, and the user’s wardrobe by fetching the
information from the Firebase Database to the Claude API. Next, we send the clear request to

Claude by asking it to generate an outfit.
aiTextStrBuilder.append ("Weather
aiTextStrBuilder.

Information:\
append (hour

aiTextStrBuilder. "\n\n")
aiTextStrBuilder

aiTextStrBuilder.

append

append

(
(
.append ("The most
(
append (

aiTextStrBuilder. "\n\n")

aiTextStrBuilder.
aiTextStrBuilder.
aiTextStrBuilder.
aiTextStrBuilder.

append ("The

fetchDataFromDatabase { items ->
elist = items

for (clothingItem in items)

Log.d ("GenerateOutfitFra

S{clothingItem.label}, ${clothingItem.co

aiTextStrBuilder.append ("it
ell,

S{clothingItem.la
}

S{clothingItem.

aiTextStrBuilder.append ("\n\n")
aiTextStrBuilder.append ("Ple

4. Parsing Claude API Response

ionInputText

Se generate an

of the user's

.toString())

-~ the user today:\n")

"item ${clothinglItem.id}:
clothingItem.brand}")

clothingItem.i

S{clothingItem.k

outfit for me")

The last step is to receive the response from Claude and parse the response to get the ID’s of
the wardrobe the API recommends. We then update the horizontal RecyclerView with the user’s

wardrobe items that Claude has recommended.
sendAndReceiveMessageFromClaude (aiTextStr)
1 regex = Regex("""item ([

nglds =

h("it

{ regex.find(it)?.

n(clothingIds)

outfitImages
{ item ->

em") }

{ outfitAIResponseStr ->
w—]+) :
outfitATIResponseStr

HHH)

?.get (1) }

mutableListOf<ClothingItem> ()

if (item.id in clothingIds) {

outfitImages.add (item)

{

bter.updatingOutfitList (outfitImages)
y.scrollToPosition (0)

5. Tomorrow.io APl Usage

The Generate Outfit fragment utilizes the Tomorrow.io API to fetch weather information using
the user’s location. By doing so, our application uses weather as a feature in determining the
best outfit for a given condition. For example, if a user was going to class on a rainy day, the
application would automatically fetch and take that weather data into account to ensure the user
had an appropriate ouffit.

Firstly, the application requests device permissions to fetch the user’s location.

g0 {
requir text().getSystemServic
.checkSelfPermission(requireConte:

.requestLocationUpdates(LocationManager.

After those permissions have been granted, the user’s latitude and longitude is captured and fed
into our Tomorrow.io API. Within the “run” function in our Generate Outfits fragment, the APl is
called using the user’s location and a variety of APl endpoints. The JSON response returned is
then saved and parsed to retrieve temperature, precipitation, and humidity data, all of which are
fed into Claude API during outfit generation.

6. Google Calendar APl Usage

The Google Calendar API is used to retrieve a user’s itinerary for the given day, serving as an
additional feature during outfit generation.

Upon a user’s request to load their calendar, they are prompted to choose a variety of Google
accounts they have already signed up with on their device. If none are present, the user is
directed to add a google account.

Google
Signin
with your Google Account.
Learn more about using your account

Email or phone

Forgot " Choose account for OutfitOfTheDay
argot emall?

O herocrime1@gmail.com

O prsona@bu.edu

@ Add account

CANCEL 0K

Create account

Upon signing in or choosing an account, a coroutine is called to fetch the user’s itinerary from
their google calendar. Through parsing and specifying variables to the Google Calendar API, the
application stores all needed information and marks it ready for use during outfit generation.

CS501 Lecture/Lab
6:30 - 9:15pm

Wedding (Very If
9:45 - 10:45pm| Pi k
10-11pm

Clothingltem.kt

This file contains the definition for the clothing item data class. Each clothing item in the
wardrobe can consist of an id (for database purposes), label, color, brand, category (what type
of clothing is it, ie tops, bottoms, etc), the imagebase64 string for the image, and a url for cases
when the picture of the clothing item is some link.

WardrobeFragment.kt
This fragment is where the user can view their clothing items that they have added to their
wardrobe. The fragment utilizes WardrobeAdapter to bind clothing items to views. It displays the
items that are stored in the Firebase Database. The function below fetches the data items from
the database and displays them in the user’s wardrobe screen:
i i £ dataFror = () |

.addValueEventListener (object : ValueEventListener ({
onDataChange (dataSnapshot: DataSnapshot) ({
.clear ()

(snapshot in dataSnapshot] ren) {
val item = snapshot.getValue (ClothingItem::c

snapshot.
s.add(it)

override ft (databaseError: DatabaseError) ({
Log.e ("We obx agment", "Failed to read wardrobe data",
databaseError.toException())
}
1)

The user has the ability to search through their wardrobe with the search bar at the top, where
they can search for keywords associated with their clothing item, including its label, color, brand,
etc. Below are the two functions that set up the search view and filter the wardrobe/update the
Ul according to the search text submitted.
private archView () {
D1ncd g cw . setOnQueryTextListener (o
SearchView.OnQueryTextListener {

‘ride fun onQueryTextSubmit (query: String?): Boolean {

erride fun onQueryTextChange (newText: String?): Boolean {

filterWardrobeBySearch (newText)

return true

1 (query: String?)

(query, igno
(query,
s (query, ign

updateUI (filteredList)

The user can also choose to view their wardrobe using selected filters. They can select to filter
their wardrobe to only view “all”, “hats”, “tops”, “bottoms”, “footwear”, and “miscellaneous”
clothing items. This can help the user look at certain items that they may be interested in. Below
is the function for filtering the wardrobe, where it uses the category that the user selected to
display onIy cIothlng items of that category.
Driva g (category: String) {
= if (category == "all") {

5 (category, igno

updateUI (filteredItems)

Remember, each clothing item has an associated category with it. The category is assigned to a
clothing item based on the clothing item’s name (there is a set of allowed/possible clothing item
labels) when it is added to the wardrobe in AddOutfitFragment.kt (function
getCategoryFromLabeI shown below)
r ctCategoryFromLabel (label: String): S

= label. e (Locale

in normalizedLabel || "shirt" in normalizedLabel || "blouse"
in normalizedLabel || "jacket" in normalizedLabel || "coat" in normalizedLabel
| | "hoodie"™ in normalizedLabel || "cardigan" in normalizedLabel || "blaz
normalizedLabel -> "Tops"

"

skirt" in normalizedLabel || "shorts" in normalizedLabel || "leggings"
in normalizedLabel -> "Bottoms"

"pant" in normalizedLabel || "jeans" in normalizedLabel -> "Bottoms"

| [Sy]

hat" in normalizedLabel || "cap" in normalizedLabel -> "Hats"

in normalizedLabel | | in normalizedLabel ||
normalizedLabel || in normalizedLabel || in

normalizedLabel->

else -—>

The user also has the ability to modify and delete clothing items from their wardrobe. They can
do this by clicking on a certain clothing item, after which the information for that clothing item will
be displayed (shown below).

Clicking on the shoe clothing item:

215 4 £ 0 @ o] 26 & 0 &

Outfit of the Day Outfit of the Day

: —
P

D) (@)

S~ —
Hats Tops Bottoms Footwear

o

-

~—
Footwear

(&
i

White

No brand or text
detected

+ ir
Add Clothes Generate Outfit Wanénbe

+ ir
Add Clothes Generate Qutfit Wanénbe

The below code handles the deleting and modifying of clothing items. If the delete option is
selected, the item is deleted from the database, and if the modify option is selected, then the
user is taken to the AddOutfitFragment where they can modify the clothing item’s details.

private fun handleItemA on (item: ClothingItem, action:

(action) {

-> showDeleteConfirmationDialog (item)
" -> navigateToAddOutfitFragment (item)

userId = auth.c
if (userId != null && item.id != null) {

FirebaseDatabase.getInstance () .getReference ("users/SuserId/outfits/S{item.id}")
.removeValue ()
.addOnSuccessListener {
alllt 5. remove (1tem)
‘ ter.notifyDataSetChanged ()
Log.d ("WardrobeFragment", "Item dele
}
.addOnFailurelListener ({
Log.e ("Wardro

This code, when run, results in the following functionality for the user when they click and hold a
given item in the wardrobe fragment.

What would you like to do?

Delete Clothing Item

Modify Clothing Item

The below code takes the user to the AddOutfitFragment where they can modify the clothing

item’s details.
[ehal fun nav ~ToAddOut ment (item: ClothingItem) ({

= Bundle () .
putString ("item
putString ("1
putString ("c«
"brand",
EaE

(
(
putString (
putString (
putString ("imac
(

putString ("imageUrl", item.imsa

repla 7
addToBackStack (null)
commit ()

Small Bonuses
Multiple Locales

Our application is accessible in two locales, that being predominantly English speaking
countries and Japan. Our group traversed the entirety of our application to remove hard-coded
strings and used string resources to display text on our application. By doing so, we ended up
with a string resource file almost 100 lines long. After finishing our default string resource file,
we added a new string resource file for the Japan locale and added Japanese translations for
each string.

By doing so, if a user switches their primary language to Japanese, the application will be
loaded using Japanese strings, providing increased accessibility for those that might not speak
English.

Device Permissions
Our application properly requests the user for their contacts and location data using device

permissions. The contacts and location permissions are granted when a user successfully
retrieves their Google calendar and weather data, respectively.

Recycler View

Our application properly utilizes recycler views when loading in a user’s wardrobe and
generating outfits. These can be found on the “Generate Outfit” and “Wardrobe” fragments.

Menus

Our application utilizes a bottom navigation bar with icons to help users navigate through the
different fragments of our application. In addition, our “Wardrobe” fragment also hosts a small
menu to filter clothing based on categories, making it easier for a user to look at any particular
type of clothing.

Use Cases

In our initial presentation pitching the idea of Outfit of the Day, we had three use cases for our
application, each emphasizing a different demographic. In our examples, we stated that
students, professionals, and adults in general all shared the same problem when it came to
deciding on an outfit for a given day or occasion: All of them took too long looking through their
wardrobe and remembering their day’s plans to create oultfits that were not the best they could
be.

With our application now being finished, we are proud to say that all of our initial use cases have
been implemented. No matter what individual you are, we make it easy to automate data
collection and outfit generation, saving you time and work.

References
e htips://chat.openai.com/
Google Calendar API using Kotlin
Tomorrow.io (Weather Information API Docs)
Claude API Docs
Cloud Vision documentation | Cloud Vision APl | Google Cloud
Firebase Realtime Database (google.com)
android - how to convert rgb color to hex color - kotlin - Stack Overflow
Download 1.348.800 free icons (SVG, PNG) (icons8.com
Android Camera Integration with Kotlin: A Step-by-Step Guide (dopebase.com)

https://chat.openai.com/
https://medium.com/@eneskocerr/get-events-to-your-android-app-using-google-calendar-api-4411119cd586
https://docs.tomorrow.io/reference/welcome
https://docs.anthropic.com/claude/docs/intro-to-claude
https://cloud.google.com/vision/docs/
https://firebase.google.com/docs/database/
https://stackoverflow.com/questions/71983679/how-to-convert-rgb-color-to-hex-color-kotlin
https://icons8.com/icons/
https://dopebase.com/android-camera-integration-kotlin-step-step-guide

