NouswNn -

A java package is a group of similar types of classes, interfaces and sub-packages.

Package in java can be categorized in two form, built-in package and user-defined package.
There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sgl etc.
Here, we will have the detailed learning of creating and using user-defined packages.

Advantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they can be easily
maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

Simple example of java package
The package keyword is used to create a package in java.

//save as Simple.java

package mypack;

public class Simple{

public static void main(String args[I{
System.out.printIn("Welcome to package");
}

}

How to compile java package

If you are not using any IDE, you need to follow the syntax given below:

javac -d directory javafilename
For example
javac -d . Simple.java

The -d switch specifies the destination where to put the generated class file. You can use any
directory name like /home (in case of Linux), d:/abc (in case of windows) etc. If you want to
keep the package within the same directory, you can use . (dot).

How to run java package program

You need to use fully qualified name e.g. mypack.Simple etc to run the class.

To Compile: javac -d . Simple.java
To Run: java mypack.Simple
Output:Welcome to package

The -d is a switch that tells the compiler where to put the class file i.e. it represents destinatior
folder.

How to access package from another package?

There are three ways to access the package from outside the package.

1. import package.*;
2. import package.classname;

3. fully qualified name.

1) Using packagename.*

g wN

©ENOG A WN

S

If you use package.* then all the classes and interfaces of this package will be accessible but
not subpackages.

The import keyword is used to make the classes and interface of another package accessible
to the current package.

Example of package that import the packagename.*

//save by A java
package pack;
public class A{
public void msg(){System.out.printIn("Hello");}
}

//save by B.java
package mypack;
import pack.*;

class B{
public static void main(String args[I){
A obj = new A();
obj.msg();
}
}

Output:Hello

2) Using packagename.classname
If you import package.classname then only declared class of this package will be accessible.

Example of package by import package.classname

//save by A java

o v AW

W oeNOOLEWNS

S

package pack;
public class A{

public void msg(){System.out.printIn("Hello");}
}

//save by B.java
package mypack;
import pack.A;

class B{
public static void main(String args[I){
A obj = new A();
obj.msg();
}
}

Output:Hello

3) Using fully qualified name

If you use fully qualified name then only declared class of this package will be accessible.
Now there is no need to import. But you need to use fully qualified name every time when
you are accessing the class or interface.

It is generally used when two packages have same class name e.g. java.util and java.sql
packages contain Date class.

Example of package by import fully qualified name

//save by Ajava
package pack;
public class A{
public void msg(){System.out.printIn("Hello");}

g wN

—_

}
//save by B.java

O NG WN

package mypack;
class B{
public static void main(String args[I){
pack.A obj = new pack.A();//using fully qualified name
obj.msg();
}
}

Output:Hello

Note: If you import a package, subpackages will not be imported.

If you import a package, all the classes and interface of that package will be imported
excluding the classes and interfaces of the subpackages. Hence, you need to import the
subpackage as well.

Note: Sequence of the program must be package then import then class.

Subpackage in java

Package inside the package is called the subpackage. It should be created to categorize the
package further.

Let's take an example, Sun Microsystem has definded a package named java that contains
many classes like System, String, Reader, Writer, Socket etc. These classes represent a
particular group e.g. Reader and Writer classes are for Input/Output operation, Socket and
ServerSocket classes are for networking etc and so on. So, Sun has subcategorized the java
package into subpackages such as lang, net, io etc. and put the Input/Output related classes
in io package, Server and ServerSocket classes in net packages and so on.

The standard of defining package is domain.company.package e.g. com.javatpoint.bean or
org.sssit.dao.

oOU s WwN =

NouswN =

Example of Subpackage

package com.javatpoint.core;

class Simple{
public static void main(String args[I){
System.out.printIn("Hello subpackage");
}

}

To Compile: javac -d . Simple.java
To Run: java com.javatpoint.core.Simple
Output:Hello subpackage

How to send the class file to another directory or drive?

There is a scenario, | want to put the class file of A java source file in classes folder of c: drive.
For example:

//save as Simple. java

package mypack;

public class Simple{

public static void main(String args[I){
System.out.printin("Welcome to package");

}
}

To Compile:

e:\sources> javac -d c:\classes Simple.java

To Run:

To run this program from e:\source directory, you need to set classpath of the directory where the

e:\sources> set classpath=c:\classes;.;
e:\sources> java mypack.Simple

Another way to run this program by -classpath switch of java:

The -classpath switch can be used with javac and java tool.

To run this program from e:\source directory, you can use -classpath switch of java that tells
where to look for class file. For example:

e:\sources> java -classpath c:\classes mypack.Simple

Output:Welcome to package

Ways to load the class files or jar files

There are two ways to load the class files temporary and permanent.
o Temporary
o By setting the classpath in the command prompt
o By -classpath switch
o Permanent
o By setting the classpath in the environment variables

o By creating the jar file, that contains all the class files, and copying the jar file
in the jre/lib/ext folder.

Rule: There can be only one public class in a java source file and it must be saved by the
public class name.

//save as C.java otherwise Compilte Time Error

>

AwN =

AwnN e

class A{}
class B{}

public class C{}

How to

If you want to put two public classes in a package, have two java source files containing one pub

name sa

put two public classes in a package?

me. For example:

//save as A.java

package

javatpoint;

public class A{}

//save as B.java

package

javatpoint;

public class B{}

Access Modifiers in Java

1.

o A~ W N

There

Private access modifier

Role of private constructor

Default access modifier

Protected access modifier

Public access modifier

Access Modifier with Method Overriding

are two types of modifiers in Java: access modifiers and non-access

modifiers.

https://www.javatpoint.com/access-modifiers#accessprivate
https://www.javatpoint.com/access-modifiers#accessprivatecons
https://www.javatpoint.com/access-modifiers#accessdefault
https://www.javatpoint.com/access-modifiers#accessprotected
https://www.javatpoint.com/access-modifiers#accesspublic
https://www.javatpoint.com/access-modifiers#accessoverriding

The access modifiers in Java specifies the accessibility or scope of a field,
method, constructor, or class. We can change the access level of fields,
constructors, methods, and class by applying the access modifier on it.

There are four types of Java access modifiers:

1.

Private: The access level of a private modifier is only within the class. It
cannot be accessed from outside the class.

Default: The access level of a default modifier is only within the package. It
cannot be accessed from outside the package. If you do not specify any
access level, it will be the default.

Protected: The access level of a protected modifier is within the package and
outside the package through child class. If you do not make the child class, it
cannot be accessed from outside the package.

Public: The access level of a public modifier is everywhere. It can be accessed
from within the class, outside the class, within the package and outside the
package.

There are many non-access modifiers, such as static, abstract, synchronized,
native, volatile, transient, etc. Here, we are going to learn the access modifiers

only.

Understanding Java Access Modifiers

Let's understand the access modifiers in Java by a simple table.

s wN

Access within within outside package by subclass

Modifier class package only
Private Y N N
Default Y Y N
Protected Y Y Y
Public Y Y Y

1) Private

The private access modifier is accessible only within the class.
Simple example of private access modifier

In this example, we have created two classes A and Simple. A class contains
private data member and private method. We are accessing these private
members from outside the class, so there is a compile-time error.

class A{
private int data=40;
private void msg(){System.out.printIn("Hello java");}

}

© N

S

12.

©WoXNOOUAWNS

public class Simplef{

public static void main(String args[I){
A obj=new A();
System.out.println(obj.data);//Compile Time Error
obj.msg();//Compile Time Error
}

}

Role of Private Constructor

If you make any class constructor private, you cannot create the instance of
that class from outside the class. For example:

class A{
private A({}//private constructor
void msg(){System.out.printIn("Hello java");}
}
public class Simplef{
public static void main(String args[I){
A obj=new A();//Compile Time Error
}
}

Note: A class cannot be private or protected except nested class.

2) Default

If you don't use any modifier, it is treated as default by default. The default
modifier is accessible only within package. It cannot be accessed from outside
the package. It provides more accessibility than private. But, it is more
restrictive than protected, and public.

COoNOOHWNZ S WN S

Example of default access modifier

In this example, we have created two packages pack and mypack. We are
accessing the A class from outside its package, since A class is not public, so it
cannot be accessed from outside the package.

//save by Ajava
package pack;
class A{
void msg(){System.out.printIn("Hello");}
}
//save by B.java
package mypack;
import pack.*;
class B{
public static void main(String args[I{
A obj = new A();//Compile Time Error
obj.msg();//Compile Time Error
}
}
In the above example, the scope of class A and its method msg() is default so
it cannot be accessed from outside the package.

3) Protected

The protected access modifier is accessible within package and outside the
package but through inheritance only.

The protected access modifier can be applied on the data member, method
and constructor. It can't be applied on the class.

S

©ENODOH:WN= A WN S

It provides more accessibility than the default modifer.
Example of protected access modifier

In this example, we have created the two packages pack and mypack. The A
class of pack package is public, so can be accessed from outside the package.
But msg method of this package is declared as protected, so it can be
accessed from outside the class only through inheritance.

//save by A java

package pack;

public class A{

protected void msg(){System.out.printIn("Hello");}
}

//save by B.java

package mypack;

import pack.*;

class B extends A{
public static void main(String args[I{
B obj = new B();
obj.msg();
}
}

Output:Hello

4) Public

The public access modifier is accessible everywhere. It has the widest scope
among all other modifiers.

Example of public access modifier

©CENODOH:WN= OO SWN

= =
o

//save by A java

package pack;

public class A{

public void msg(){System.out.printIn("Hello");}
}

//save by B.java

package mypack;
import pack.*;

class B{
public static void main(String args[I{
A obj = new A();
obj.msg();
}

.

Output:Hello

Java Access Modifiers with Method Overriding

If you are overriding any method, overridden method (i.e. declared in

subclass) must not be more restrictive.

class A{

protected void msg(){System.out.println("Hello java");}

}

public class Simple extends A{

void msg(){System.out.println("Hello java");}//C.T.Error

public static void main(String args[I{

8. Simple obj=new Simple();
9. obj.msg();

10. }

n)

	Access Modifiers in Java
	Understanding Java Access Modifiers
	1) Private
	Role of Private Constructor
	Note: A class cannot be private or protected except nested class.

	2) Default
	3) Protected
	4) Public
	Java Access Modifiers with Method Overriding

