| SUBJECT: AP Calculus AB | GRADE: 9-12 | |---|---| | Unit Title: Unit 2 – Limits and Continuity | Time Frame: 4 weeks (Summer work) | | UN | IT OVERVIEW | | What are limits? How are limits of functions evaluated? How are limits used to define continuity? How are limits used to describe asymptotic and unbounded | ed behavior? | | LRG SKILLS AND DISPOSITIONS | PA STANDARDS | | COMPETENCIES | LEARNING TARGETS | | Limits and Continuity I can determine limits and identify continuity of functions. | Limit Notation I can use limit notation. (K1MAB12S1) One-sided Limits I can evaluate one-sided limits and limits involving infinity. (K1MAB12S2) Limit Existence I can evaluate when limits do not exist. (K1MAB12S3) Limits of Functions I can determine limits of functions. (K1MAB12S4) Descriptions using Limits I can use limits to describe asymptotic and unbounded behavior. (K1MAB12S5) Continuity I can define continuity. (K1MAB12S6) | | Discontinuities ■ I can identify types of discontinuities. (K1MAB12S7) Intermediate Value Theorem ■ I can apply the intermediate value theorem. (K1MAB12S8) | |--| | | | SUBJECT: AP Calculus AB | GRADE: 9-12 | |--|---------------------| | Unit Title: Unit 3 – Derivatives | Time Frame: 8 weeks | | UNIT | Γ OVERVIEW | | What is the limit definition of the derivative of a function? What does a derivative represent? What is the difference between the average rate of change and the instantaneous rate of change of a function? When are functions not differentiable? What are the rules of differentiation? What is implicit differentiation? How is differentiation applied to motion? How is differentiation used to find higher order derivatives? | | | LRG SKILLS AND DISPOSITIONS | PA STANDARDS | | Collaboration and Teamwork 9-12: Derivatives Presentation
(S1C) | | **Derivative as Rate of Change** **LEARNING TARGETS** • Critical Thinking and Problem Solving 9-12: Derivatives **COMPETENCIES** Presentation (S4C) **Derivatives and Integrals** I can find, interpret, and use derivatives and integrals to solve problems. • I can understand the meaning of a derivative as the instantaneous rate of change. (K1MAB13S1) #### **Limit Definition of Derivative** • I can apply the limit definition of derivative. (K1MAB13S2) ### **Average Rate of Change** • I can estimate the derivative from graphs and tables using average rate of change. (K1MAB13S3) # **Slope of Tangent Line** • I can solve problems involving the slope of the tangent line at a point. (K1MAB13S4) ## **Differentiability and Continuity** • I can recognize the connection between differentiability and continuity (K1MAB13S5) # Non-differentiability • I can identify and classify points at which a function is not differentiable. (K1MAB13S6) #### **Derivative Rules** • I can use derivative rules. (K1MAB13S7) #### **Product and Quotient Rules** • I can use the product and quotient rules (K1MAB13S8) #### **Higher Order Derivatives** • I can use differentiation to find higher order derivatives. (K1MAB13S9) # **Applications of Derivatives** • I can solve applications of derivatives involving linear motion. (K1MAB13S10) # **Trig Derivatives** • I can find derivatives of trigonometric functions. (K1MAB13S11) #### **Chain and Power Rules** • I can use the chain and power chain rules. (K1MAB13S12) ### **Implicit Differentiation** • I can find derivatives implicitly. (K1MAB13S13) #### **Derivative of an Inverse** • I can find derivatives of f inverse at (f(a), a), given (a, f(a)) and f'(a). (K1MAB13S14) ## **Inverse Trig Derivatives** • I can find derivatives of inverse trigonometric functions. (K1MAB13S15) | | Exp and Log Derivatives I can find derivatives of exponential and logarithmic functions.
(K1MAB13S16) | |--|--| |--|--| | SUBJECT: AP Calculus AB | GRADE: 9-12 | |---|---| | Unit Title: Unit 4 – Applications of Derivatives | Time Frame: 6 weeks | | UNIT | T OVERVIEW | | How is differentiation used to solve related rate problems? How are derivatives used to analyze functions? How are derivatives used to solve optimization problems? | | | LRG SKILLS AND DISPOSITIONS | PA STANDARDS | | Collaboration and Teamwork 9-12: Related Rates Presentation (S1C) Critical Thinking and Problem Solving 9-12: Related Rates Presentation (S4C) | | | COMPETENCIES | LEARNING TARGETS | | Derivatives and Integrals I can find, interpret, and use derivatives and integrals to solve problems. | Related Rates • I can solve applications of derivatives involving related rates. (K1MAB13S17) Function Behavior and Extreme Values • I can use derivatives to analyze function behavior and find points of extremity. (K1MAB13S18) Mean Value Theorem | | | I can apply the mean value theorem to describe the behavior of a function over an interval. (K1MAB13S19) Concavity and POI I can use derivatives to analyze function concavity and points of inflection. (K1MAB13S20) Optimization I can solve applications of derivatives involving optimization. (K1MAB13S21) | |--|---| |--|---| | SUBJECT: AP Calculus AB | GRADE: 9-12 | |---|---------------------| | Unit Title: Unit 5 – Integrals | Time Frame: 6 weeks | | UNIT | ΓOVERVIEW | | What are integrals? How are integrals evaluated and approximated? What are antiderivatives and how are they used to evaluate integrals? What is the Fundamental Theorem of Calculus? How are derivatives and integrals found using the FTC? | | | LRG SKILLS AND DISPOSITIONS | PA STANDARDS | | | | | | | | | | | COMPETENCIES | LEARNING TARGETS | **Integral Approximation Methods** **Derivatives and Integrals** | I can find, interpret, | and use derivatives and | integrals to solve | |------------------------|-------------------------|--------------------| | problems. | | _ | • I can approximate a definite integral using rectangular and trapezoidal methods. (K1MAB13S22) ## **Riemann Sums and Definite Integrals** • I can interpret and express the limit of a Riemann sum as a definite integral using integral notation. (K1MAB13S23) ## **Definite Integral Evaluation** • I can calculate a definite integral using geometry and properties of definite integrals. (K1MAB13S24) #### **Antiderivatives** • I can recognize antiderivatives of basic functions. (K1MAB13S25) ### **Fundamental Theorem of Calculus** • I can find the derivative of a function defined as an integral using the Fundamental Theorem of Calculus. (K1MAB13S26) # **Functions defined as Integrals** • I can analyze functions defined by an integral. (K1MAB13S27) ## **Evaluating Integrals by the FTC** • I can evaluate indefinite and definite integrals using antiderivatives and the Fundamental Theorem of Calculus. (K1MAB13S28) | SUBJECT: AP Calculus AB | GRADE: 9-12 | |--|---| | Unit Title: Unit 6 – Differential Equations and Methods of Integration | Time Frame: 4 weeks | | UNI | T OVERVIEW | | What are slope fields and how are they used to determine solution graphs? How are differentiable equations solved? What are antiderivatives and how are they used? How are integrals evaluated using u-substitution? How is separation used to solve differential equations? | | | LRG SKILLS AND DISPOSITIONS | PA STANDARDS | | | | | COMPETENCIES | LEARNING TARGETS | | Derivatives and Integrals I can find, interpret, and use derivatives and integrals to solve problems. | Solving Differential Equations I can analyze differential equations to obtain general and specific solutions. (K1MAB13S29) Estimating Solutions of Differential Equations I can verify and estimate solutions of differential equations. (K1MAB13S30) Slope Fields I can analyze differential equations by identifying characteristics of their slope fields. (K1MAB13S31) Find Antiderivatives I can find antiderivatives. (K1MAB13S32) U-Substitution | | I can evaluate indefinite and definite integrals using u-substitution (K1MAB13S33) Separation of Variables I can analyze differential equations to obtain general and specific solutions using separation of variables. (K1MAB13S34) | |--| | Exponential Growth | | I can interpret, create, and solve differential equations from problems in context (specifically exponential growth) (K1MAB13S35) | | SUBJECT: AP Calculus AB | GRADE: 9-12 | |--|---| | Unit Title: Unit 7 – Applications of Integration | Time Frame: 6 weeks | | UNI | Γ OVERVIEW | | How are integrals used to evaluate net change? How are integrals used to find the average value of a function? How are integrals used to calculate areas How are integrals used to calculate volumes? | | | LRG SKILLS AND DISPOSITIONS | PA STANDARDS | | Collaboration and Teamwork 9-12: Applications of
Integration Presentation (S1C) Critical Thinking and Problem Solving 9-12: Applications of
Integration Presentation (S4C) | | | COMPETENCIES | LEARNING TARGETS | | Derivatives and Integrals I can find, interpret, and use derivatives and integrals to solve problems. | Integrals as Net Change ■ I can interpret a definite integral as net change of a quantity. (K1MAB13S36) | | Linear Motion I can apply definite integrals to problems involving linear motion. (K1MAB13S37) Average Value of a Function I can apply definite integrals to problems involving the average value of a function. (K1MAB13S38) | |--| | Area and Volume • I can apply definite integrals to problems involving area and volume (K1MAB13S39) | | SUBJECT: AP Calculus AB | GRADE: 9-12 | | | | | |---|--|--|--|--|--| | Unit Title: Unit 8 – L'Hopital's Rule and AP Exam Preparation | Time Frame: 4 week | | | | | | UNIT OVERVIEW | | | | | | | How are limits of indeterminate forms evaluated? How are MC and FR questions answered on AP Exam format answered on AP Exam format answered. | assessments? | | | | | | LRG SKILLS AND DISPOSITIONS | PA STANDARDS | | | | | | • Resilience and Grit 9-12: AP Calculus AB Simulation Exam (D4C) | | | | | | | COMPETENCIES | LEARNING TARGETS | | | | | | Limits and Continuity I can determine limits and identify continuity of functions. | L'Hopital's Rule • I can find limits of indeterminate forms using L'Hopital's Rule. (K1MAB12S9) | | | | |