
The legacy API consists of methods defined in libbsp/shared/src/rq-legacy.c . The prototypes for
these functions are written in cpukit/include/rtems/irq.h
Following are the rules/recommendations that must be followed while updating legacy code
from RTEMS BSPs. They are:

●​ The replacement of legacy methods should happen like this:

BSP_get_current_rtems_irq_handler() → ​Obsolete
BSP_install_rtems_irq_handler() ​ →​ rtem_interrupt_handler_install()
BSP_install_rtems_shared_irq_handler() →​ rtems_interrupt_handler_install()
BSP_remove_rtems_irq_handler() → ​rtems_interrupt_handler_remove()
BSP_rtems_irq_mngt_set() → ​bsp_interrupt_initialize()
BSP_rtems_irq_mngt_get → Obsolete

●​ All uses of rtems_irq_connect_data type and other data types from legacy API should be

removed and replaced with suitable data types if required.
rtems_irq_connect_data → Use components of this data type individually
rtems_irq_number → rtems_vector_number
rtems_irq_hdl_param → void *
rtems_irq_hdl​ ​ → void *

●​ Remove functions if they’re defined but not used, or if they’re empty.
●​ Insert prototypes for non-global functions(having no declarations in a header file) in order to

remove any compiler warnings.
●​ Make functions static if they’re only used in that specific file.
●​ Obtain status of install() & remove() functions in a rtems_status_code status and check it’s

value with an assert().
●​ While using install() method from the new API, the on() function needs to be called if it’s

defined, and it’s not empty.
●​ While using remove() method from the new API, the off() function needs to be called before,

if it’s defined, and it’s not empty.
●​ The implementation of is_enabled/is_on() helper from previous structure should be removed

if it’s not used already.
●​ Inserting a declaration of a global function in the same file is a bad hack.

