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1. Abstract

Apache Beam supports GPU and TPU accelerators via Dataflow, but users face a “cliff”
between a local Python script and a working accelerated pipeline. Existing notebooks
jump directly to complex configurations with no intermediate steps, and zero examples
demonstrate model training (only inference). Meanwhile, the examples that do exist
reference outdated versions (apache-beam|[gcp]==2.44.0) and break silently over
time.

This project builds a 4-stage progressive learning path — from CPU baseline to
TPU-accelerated parallel training — plus a sustainable Cl strategy and a reference blog
post. Three technical innovations:

* Modern worker accelerator + resource hints APl as the canonical way
to provision accelerators

« Shared code structure — TPU training via torch x1a, GPU via native CUDA
PyTorch, with a thin get device () abstraction that keeps the pipeline logic
identical

* Scheduled smoke runs + nightly mocks that validate freshness continuously
without manual intervention

Figure 1. Progressive Learning Path — each stage adds ONE new concept

Stage 1

CPU Baseline

cpu_inference.py

2. Current Gaps

Stage 2

GPU + Hints
gpu_inference.py

~600 img/s

\

J

\

Stage 3

TPU Training
tpu training.py

First training ex.

J

Users can stop at any stage and still have a working, runnable example.

Stage 4

Parallel Sweep

parallel training.py

The simplest existing GPU example (run inference tensorflow.ipynb)
immediately requires a custom Docker image, Runner v2, worker accelerator
flags, and GCS bucket setup. There is no “Hello GPU” that takes 5 minutes.
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No existing example benchmarks CPU vs GPU vs TPU on the same task. Users cannot
answer: “Is the $3.80/hr GPU worker worth it compared to 8 CPU workers at $0.07/hr
each?”

The Beam ML docs list “Model training” as a supported lifecycle step, but link to zero
examples. All 15+ notebooks use RunTInference for prediction. Users who need to
fine-tune models inside a Beam pipeline have no reference architecture.

The TensorRT Dockerfile still references apache-beam[gcp]==2.44.0 and
torch==1.13.1. Without CI to validate them, examples silently decay. This project
addresses freshness with scheduled Dataflow smoke runs — not just
maintainer-triggered tests.

3. Project Goals and Deliverables

3.1 Learning Path Overview

Each stage introduces exactly one new concept. A user can stop at any stage and still
have a working, useful example.

e e S " S

CPU baseline cpu_inference.py Performance baseline
2 GPU + gpu_inference.py ~10-20x% speedup
worker_accelerator
3 TPU + training tpu training.py First Beam training
example
4 Parallel sweep parallel training.py 18 models trained in
parallel

3.2 Deliverables with Acceptance Criteria

Completion is defined at two levels. Implementation-complete means code reviewed,
tests green, and PR approved—this is fully within my control. Merged means landed in
trunk, which additionally depends on community review bandwidth.

D1 Four Progressive Example Scripts
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» Each script is self-contained, runnable, and benchmarked with inline comments
 worker accelerator APl used as canonical accelerator provisioning
D2 Dockerfile + Container Configs
* Dockerfile.gpu (CUDA + PyTorch) and Dockerfile. tpu (torch_xla +
libtpu)
D3 Continuous Freshness Pipeline
» Tier 1: Nightly pytest + TestPipeline on CPU (GitHub Actions, free)

« Tier 2: Weekly scheduled Dataflow smoke run (lightweight, ~$0.50/run)
validating GPU path end-to-end

D4 Blog Post (~3000 words)

* Published on beam.apache.org with benchmark charts, architecture diagrams,
and cost analysis

D5 Cost vs. Speed Cheat Sheet
« CPU/T4/L4/TPU comparison table embedded in blog and README

4. Technical Approach

Note on code snippets: All code blocks in this proposal are illustrative. Final, fully
runnable examples—with complete imports, pipeline options, and error handling—will
live in examples/. .. alongside the shipped SDK.

4.1 Stage 1 — CPU Baseline

Establish a performance baseline using a standard Beam RunInference pipeline on
CPU. Runs locally in under 5 minutes with no cloud setup.

ResNet-18 pretrained on ImageNet, evaluated on CIFAR-10 (60K images, ~170 MB).
Built into torchvision—no manual download required.

# Stage 1: cpu inference.py

import apache beam as beam

from apache beam.ml.inference.pytorch inference import
PytorchModelHandlerTensor

model handler = PytorchModelHandlerTensor (

Page 5



GSoC 2026 — From Zero to TPU

model class=torchvision.models.resnetl8,
model:params:{"weights": "IMAGENET1K V1"},
)
with beam.Pipeline() as p:
_ =
P
| "LoadCIFAR" >> beam.Create(load cifarl0 tensors())
| "Inference" >> RunInference(modgl handlgr)
| "Accuracy" >> beam.CombineGlobalIy(AccuracyFn())
\

"Log" >> beam.Map (print)
)

Expected output: ~50 images/sec on a modern laptop.

4.2 Stage 2 — GPU Acceleration

New Concept: worker_accelerator + resource_hints

This stage introduces the worker accelerator flagand resource hints API for
provisioning GPU workers on Dataflow. Per the Dataflow GPU support docs,
provisioning uses the type : ACCELERATOR; count:N; install-nvidia-driver
syntax.

Note: On Dataflow, --worker accelerator provisions the actual GPU/TPU
workers. resource hints annotates the specific transform that benefits from an
accelerator (readability today, and runner placement/portability over time). In these
examples, GPUs use both; TPUs are provisioned via --worker accelerator only.

Pipeline Changes (Diff from Stage 1)

# Stage 2: gpu inference.py (changes from Stage 1 highlighted)

# NEW: resource hints for GPU provisioning

| "Inference" >> RunlInference (model handler) .with resource hints(
accelerator="type:nvidia-tesla-t4;count:1l;install-nvidia-drivezr"

)

# NEW: Dataflow runner options

pipeline options = PipelineOptions ([
"—--runner=DataflowRunner",
"--project=PROJECT_ID",
"--region=us-centrall",
"--temp location=gs://BUCKET/tmp",
"--sdk container image=CUSTOM IMAGE",
# For GPU workers:

"--worker accelerator=type:nvidia-tesla-t4;count:1l;install-nvidia-driver",

1)

Custom Docker Image

# Dockerfile.gpu
FROM apache/beam python3.11 sdk:2.63.0
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RUN pip install torch==2.5.0 torchvision==0.20.0 \
--index-url https://download.pytorch. org/whl/culZl
COPY stages/ /app/stages/

Expected output: ~500—1000 images/sec. ~10-20x speedup over CPU baseline.

4.3 Stage 3 — TPU Training

This is the first Beam example that demonstrates model training (not just inference).
TPU training uses torch x1la; GPU training uses native CUDA PyTorch. The pipeline
logic (TrainModelDoFn) is shared across backends via a thin get device ()
abstraction.

Beam is not a replacement for Ray Train or PyTorch DDP for large-scale distributed
pretraining. This project positions Beam for three scenarios where its pipeline model is
uniquely suited: (1) partitioned fine-tuning (train separate models per customer/region),
(2) hyperparameter sweeps (embarrassingly parallel grid search), and (3) online
learning as part of a streaming pipeline.

Training uses torch x1la for TPU; GPU uses standard CUDA PyTorch. The

get device () helper selects the backend based on PJRT DEVICE (setin our TPU
Docker image). On GPU workers, PJRT DEVICE is absent, so torch_xla is never
imported—eliminating the risk of accidentally running XLA on CUDA hardware.

# device utils.py
import os
import torch

def get device (backend: str = "auto") -> torch.device:

wuan

Select device backend: 'tpu', 'gpu', 'cpu', or 'auto'

- 'tpu': use torch xla (expects TPU runtime / PJRT).

- 'gpu': use native CUDA PyTorch.

- 'cpu': always CPU.

- 'auto': use TPU only when PJRT DEVICE=TPU (Dataflow TPU
image), otherwise use CUDA if available, else CPU.

Note: We intentionally do NOT attempt to run XLA on GPU
workers.

nan

backend = (backend or "auto").lower ()
# TPU path (explicit or environment-indicated)

if backend == "tpu" or (
backend == "auto"
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and os.getenv ("PJRT _DEVICE", "") .upper ()

import torch xla.core.xla model as xm
return xm.xla device ()

# GPU path (explicit or auto)
if backend in ("gpu", "auto"):
if torch.cuda.is_available():
return torch.device ("cuda")
if backend == "gpu":
raise RuntimeError (

GSoC 2026 — From Zero to TPU

== "TpPy"

"GPU requested but CUDA is not available."

)

return torch.device ("cpu")

def sync device(device: torch.device):

"""Flush XLA computation graph. No-op for CUDA/CPU."""

if "xla" in str(device):
import torch xla.core.xla model as xm
xm.mark step ()

TrainModelDoFn

class TrainModelDoFn (beam.DoFn) :

"""Trains a model on a single accelerator per worker."""

def setup(self):
# BEAM ACCELERATOR BACKEND can be set in

Dockerfile:

# ENV BEAM ACCELERATOR BACKEND=tpu (TPU image)
# not set / "auto" (GPU image)

self.device = get device (
os.getenv("BEAMiACCELERATORiBACKEND",
)

def process(self, config: TrainingConfigqg):

"aU.tO")

model = build model (config.model name) .to(self.device)

optimizer = torch.optim.Adam

model.parameters (), lr=config.learning rate

)

train loader = get cifarl0 loader (config.batch size)

test loader = get cifarl0 loader(
config.batch size, split="test"

)

checkpoint path = None
for epoch in range (config.epochs) :
for batch x, batch y in train loader:
batch x = batch x.to(self.device)
batch y = batch y.to(self.device)

loss = F.cross entropy(model (batch x), batch y)

loss.backward()
optimizer.step ()
optimizer.zero grad()

sync_device(self.device) # flush XLA graph
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# Checkpoint every epoch to GCS (fault tolerance)

checkpoint path = save checkpoint (
model, config, epoch,
f"gs://{BUCKET}/checkpoints/"
)

accuracy = evaluate(model, test loader, self.device)

yield TrainingResult (
experiment id=config.experiment id,

accuracy=accuracy, model path=checkpoint path,

)

def teardown (self):
if "xla" in str(self.device):
import torch xla.core.xla model as xm
xm.mark step() # flush any pending XLA ops
elif torch.cuda.is available():
torch.cuda.empty cache ()

TPU Docker Image & Provisioning

# Dockerfile.tpu

FROM apache/beam python3.11 sdk:2.63.0

RUN pip install torch~=2.5.0 torchvision~=0.20.0 \
torch xla[tpul~=2.5.0 \

-f https://storage.googleapis.com/libtpu-releases/index.html

ENV PJRT DEVICE=TPU

ENV TPU SKIP MDS QUERY=1

ENV BEAM ACCELERATOR BACKEND=tpu
COPY stages/ /app/stages/

TPU Dataflow launch command
Uses worker accelerator with type + topology syntax.

H o S o

python tpu training.py \
-—-runner=DataflowRunner \
--project=PROJECT ID \
--worker accelerator=type:TPU TYPE;topology:1xl \
--sdk_container image=TPU IMAGE \
-—-dataflow service options=enable prime

TPU Topology Note

TPU TYPE depends on region availability (e.g. vbe / v5 lite);
we will document the verified value with links to Dataflow
TPU docs once quota is confirmed during community bonding.

This project uses embarrassingly parallel training: each Dataflow worker gets one
TPU chip and trains independently (topology:1x1). We are not doing multi-node
distributed training. Each worker sees itself as the only TPU node. For larger topologies

and multi-host training, see the Dataflow TPU documentation.

4.4 Stage 4 — Parallel Training Pipeline

New Concept: Embarrassingly Parallel ML
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This stage demonstrates Beam'’s unique strength: distributing 18 independent training
jobs across GPU/TPU workers with automatic result aggregation.

Figure 2. Stage 4 Pipeline Architecture — Parallel Hyperparameter Sweep

beam.Create

18 TrainingConfigs

"
Reshuffle i
beam.Reshuffle() R
forces parallel
distribute to workers distribution
r‘§:::::..._" -
Worker 1 Worker-2— Worker N
Each worker has
(T4 GPU) (T4 GPU) s (T4 GPU) its own accelerator
TrainModelDoFn TrainModelDoFn TrainModelDoFn (embarrassingly //)
N =
e
CombineGlobally
BestModelFn ()
—
- i
Deploy Best Model Save All Results

gs://bucket/serving/ gs://bucket/results/

# Stage 4: parallel training pipeline.py

configs = generate grid search(
learning rates=[0.01, 0.001, 0.0001],
batch sizes=[16, 32, 641,
models=["resnetl8", "resnet34"],

) # 3 x 3 x 2 = 18 parallel training jobs

with beam.Pipeline (options=opts) as p:
results = (
IS
beam.Create (configs)
beam.Reshuffle () # CRITICAL: distribute across workers
beam.ParDo (TrainModelDoFn ()) .with resource hints(
accelerator="type:nvidia-tesla-t4;count:1l;install-nvidia-driver"

)

H ~—

Select best model
=
results
| beam.CombineGlobally (BestModelFn ())
| beam.ParDo (DeployBestModelFn ("gs://BUCKET/serving/"))

H o~

Save all results
= (
results
| beam.Map (lambda r: json.dumps (asdict(r)))
| beam.io.WriteToText ("gs://BUCKET/results/all")
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beam.Reshuffle () is critical—without it, Dataflow may process all 18 configs
sequentially on a single worker.

Both GPU and TPU use the same --worker accelerator flag syntax. GPU:
type:nvidia-tesla-t4;count:1;install-nvidia-driver. TPU:
type:TPU TYPE; topology:1x1l (the exact TPU type depends on region
availability—e.g. vbe or v5 lite; we will document the verified value once quota is
confirmed). The resource hints APl supports GPU (via

with resource hints (accelerator=...)) butdoes notyet support TPU

provisioning. This project documents both the flag-based and hints-based paths, noting
which accelerators each currently covers.

4.5 Continuous Freshness Strategy

Example rot is the #1 threat to this project’s long-term value. The freshness strategy
has three tiers, designed so that examples stay validated automatically—not just when
a maintainer remembers to trigger a test.

GitHub Actions runs pytest + TestPipeline on CPU every night. Validates pipeline
DAG construction, DoFn lifecycle, and data flow without any cloud resources.

# ci/test cpu mock.py
def test train dofn produces result():
"""TrainModelDoFn completes 1 epoch on CPU with 10 images."""
config = TrainingConfig(
experiment id="test", epochs=1,
batch size=2, learning rate=0.001,
)
with TestPipeline () as p:
results = (
P
| beam.Create([config])
| beam.ParDo (TrainModelDoFn () )
)
assert that(
results | beam.Map(lambda r: r.experiment id),
equal to(["test"])
)

def test best model fn():
"""BestModelFn selects config with highest accuracy."""

results = [
TrainingResult ("a", accuracy=0.85, model path="gs://a"),
TrainingResult ("b", accuracy=0.92, model path="gs://b"),

]
with TestPipeline () as p:

best = (
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P
| beam.Create (results)

| beam.CombineGlobally (BestModelFn ())
)

assert that(
best | beam.Map(lambda r: r.experiment id),
equal to(["b"])

A cron-triggered GitHub Action launches a lightweight Dataflow job every Monday
that runs Stage 2 (GPU inference on 1000 images) end-to-end. This catches Docker
image breakage, SDK version drift, and Dataflow APl changes before users hit them.
Estimated cost: ~$0.50/week using a single preemptible T4 worker for ~3 minutes.

# ci/scheduled smoke.yml
name: Weekly Dataflow Smoke
on:
schedule: [{cron: 'O 8 * * 1'}] # Every Monday 8am UTC
jobs:
smoke-test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: google-github-actions/auth@v2
with:
credentials json: ${{ secrets.GCP_SA KEY }}
- run: |
python stages/gpu inference.py \
--runner=DataflowRunner \
--num_images=1000 \

--worker accelerator=type:nvidia-tesla-t4;count:1l;install-nvidia-driver \
--max_ num workers=1
- run: python ci/verify output.py # check results exist

For TPU and Stage 4 validation, run integration.sh can be triggered manually via
aci/run-integration GitHub label. This is for pre-release validation, not
continuous freshness.

Clarification on “continuous freshness”: Tests run at three cadences: nightly
(mock/DirectRunner), weekly (Dataflow smoke with CPU/GPU), and on-demand (TPU

integration, triggered manually or before releases). “Continuous freshness” refers to the
nightly + weekly tiers; TPU runs are intentionally on-demand to manage cost.

4.6 Cost vs. Speed Cheat Sheet

Preliminary estimates for CIFAR-10 (ResNet-18, 10 epochs). TPU values are estimates
to be validated during Week 8-9.
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CPU T4 GPU L4 GPU TPU v5e*
(n1-std-4)

Inference (img/s) ~50 ~600 ~900
Train time (10 ep) ~45 min ~8 min ~5 min
$/hr $0.19 $0.95 $1.22
Total cost (1 job) $0.14 $0.13 $0.10
Speedup vs CPU 1x ~5.6% ~9x

~1200*
~4 min*
$1.20*
$0.08*
~11x*

* TPU values are estimates; will be updated after Week 8—9 benchmarks.

5. Timeline (12 Weeks)

Coding period: June 2 — August 25, 2026 (aligned with the official GSoC 2026
calendar). Each week targets a single objective. If Phase 2 runs over, stretch goal time

is compressed—core development time is protected.

‘m Objective Deliverable Acceptance Criteria

W1 (Jun 2) Stage 1: CPU baseline + cpu_inference.py
benchmarks

W2 (Jun 9) Stage 2: GPU Dockerfile + Dockerfile.gpu
worker_accelerator

W3 (Jun 16)  Stage 2: Deploy GPU gpu_inference.py
inference to Dataflow

W4 (Jun 23) Stage 3: Design Design doc
TrainModelDoFn +
device_utils

W5 (Jun 30) = Stage 3: Implement training tpu_training.py
loop + checkpointing (CPU)

W6 (Jul 7) Stage 3: TPU Dockerfile + Dockerfile.tpu
Colab TPU VM test

Stages 1-3 PRs open for
implementation-complete. review
Submit midterm

evaluation.

W7 (Jul 21) Stage 3: Deploy training to TPU Dataflow job
Dataflow TPU

W8 (Jul 28) Stage 4: Parallel pipeline + parallel_training.py
Reshuffle
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W9 (Aug 4) Stage 4: BestModelFn + Results JSON Best model
end-to-end sweep auto-selected
W10 (Aug 11) = CI: Tier 1 mocks + Tier 2 ci/ directory Nightly + weekly smoke
scheduled smoke green
W11 (Aug 18) Blog post + Cost vs Speed Blog draft ~3000 words;
cheat sheet benchmarks included
W12 (Aug 25) Review feedback + docs All PRs updated Cl green = 14 days;
polish + final eval eval submitted

TPU Fallback: If TPU quota is denied, Stage 3 runs on GPU (same code, different
device via get device () ). TPU validation deferred to Tier 3 CI.

6. Testing Strategy

* TrainModelDoFn: verify 1-epoch training completes, produces
TrainingResult

* BestModelFn: verify selection of highest-accuracy result
* get device (): verify fallback chain (TPU — GPU — CPU) using mock imports

* Pickle round-trip for TrainingConfigand TrainingResult dataclasses

» Weekly GPU inference end-to-end on Dataflow (Tier 2, automated)
» Validates Docker image, SDK version, and Dataflow API compatibility

« Stage 3: TPU training with checkpoint written to GCS
» Stage 4: 18-config parallel sweep completes, best model selected

Container-first development: test locally with docker run --gpus all before

deploying to Dataflow, ensuring custom image and dependencies are validated before
cloud execution.

7. Risks & Mitigations
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TPU quota denied vbe quota is limited and may require Request during bonding
manual approval. period. Develop on Colab
TPU VM (free). GPU
fallback: same code,
different device.

torch_xla + Beam torch_xla multi-processing may conflict = Set

conflict with Beam worker harness. number_of worker_harness
_threads=1. Known to work
per Dataflow TPU
quickstart.

Works locally, fails Docker image differences, missing Container-first dev: always

on Dataflow deps, SDK version mismatch. test in Docker locally before
cloud deploy.

Training too slow CIFAR-10 is small, but Docker cold start = Pre-stage data to GCS. ~2
+ GCS data loading adds overhead. min/epoch on T4. Pattern
demo, not prod-scale.

Worker preemption = Dataflow workers can be preempted Checkpoint every epoch to
mid-training. GCS. Demonstrates
fault-tolerant training.
Scope creep Temptation to add TensorRT, streaming, = All explicitly out of scope.
multi-node distributed. Single-chip embarrassingly
parallel only.
8. About Me

| am Elia Liu, a final-year computer science student at the University of Melbourne. |
have been contributing to Apache Beam’s Python SDK and am drawn to this project
because making hardware accelerators accessible to ML practitioners is one of the
most impactful things the Beam community can do right now.

8.1 Prior Contributions to Apache Beam

PR #37299 Fixed a production stability bug in ExternalTransform.expand ()
where direct accessto type hintsraised an AttributeError. Replaced with

get type hints (). Gave me hands-on experience with Beam'’s transform expansion
internals.

PR #37428 Added content-aware dynamic batching to Runinference via
element size fn.Enables batching by actual content cost (token count, pixel count)
for efficient GPU utilization. Sits squarely in Beam ML space.

8.2 Why Me
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« Python + PyTorch: Both merged PRs involved production-quality Python with
pytest coverage. Extensive PyTorch experience from coursework and personal
projects.

» Full-stack background: Java/React experience gives me an architectural
understanding of Beam’s SDK internals and runner model, useful for debugging
cross-language and pipeline construction issues.

» Al Infrastructure: Hands-on Docker + GCP experience. Familiar with custom
container workflows, Dataflow deployment, and GCS integration—exactly the
toolchain this project demands.

+ Documentation focus: | understand where jargon confuses beginners—exactly
what this project needs. My PRs include detailed descriptions and inline
comments.

8.3 Availability

| can dedicate approximately 30 hours/week, consistent with the 350-hour budget over
12 weeks. No major conflicts.

9. Communication Plan

Weekly video call with Pablo Estrada. Async updates on Beam dev mailing list. Draft
PRs opened early for community visibility. Design docs shared as Google Docs before
implementation. Review feedback addressed within 24 hours.

Pre-GSoC plan: Submit at least 1 additional PR to apache/beam before coding starts
(e.g., fix a broken ML notebook).
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