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1. Abstract 
Apache Beam supports GPU and TPU accelerators via Dataflow, but users face a “cliff” 
between a local Python script and a working accelerated pipeline. Existing notebooks 
jump directly to complex configurations with no intermediate steps, and zero examples 
demonstrate model training (only inference). Meanwhile, the examples that do exist 
reference outdated versions (apache-beam[gcp]==2.44.0) and break silently over 
time. 

This project builds a 4-stage progressive learning path — from CPU baseline to 
TPU-accelerated parallel training — plus a sustainable CI strategy and a reference blog 
post. Three technical innovations: 

•​ Modern worker_accelerator + resource_hints API as the canonical way 
to provision accelerators 

•​ Shared code structure — TPU training via torch_xla, GPU via native CUDA 
PyTorch, with a thin get_device() abstraction that keeps the pipeline logic 
identical 

•​ Scheduled smoke runs + nightly mocks that validate freshness continuously 
without manual intervention 

 

 
 

2. Current Gaps 
Gap #1: The Configuration Cliff 
The simplest existing GPU example (run_inference_tensorflow.ipynb) 
immediately requires a custom Docker image, Runner v2, worker_accelerator 
flags, and GCS bucket setup. There is no “Hello GPU” that takes 5 minutes. 
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Gap #2: No Performance Comparison 

No existing example benchmarks CPU vs GPU vs TPU on the same task. Users cannot 
answer: “Is the $3.80/hr GPU worker worth it compared to 8 CPU workers at $0.07/hr 
each?” 

Gap #3: Inference Only, No Training 

The Beam ML docs list “Model training” as a supported lifecycle step, but link to zero 
examples. All 15+ notebooks use RunInference for prediction. Users who need to 
fine-tune models inside a Beam pipeline have no reference architecture. 

Gap #4: Example Rot 
The TensorRT Dockerfile still references apache-beam[gcp]==2.44.0 and 
torch==1.13.1. Without CI to validate them, examples silently decay. This project 
addresses freshness with scheduled Dataflow smoke runs — not just 
maintainer-triggered tests. 

3. Project Goals and Deliverables 

3.1 Learning Path Overview 
Each stage introduces exactly one new concept. A user can stop at any stage and still 
have a working, useful example. 

Stage New Concept Script Outcome 

1 CPU baseline cpu_inference.py Performance baseline 

2 GPU + 
worker_accelerator 

gpu_inference.py ~10–20× speedup 

3 TPU + training tpu_training.py First Beam training 
example 

4 Parallel sweep parallel_training.py 18 models trained in 
parallel 

 

3.2 Deliverables with Acceptance Criteria 
Completion is defined at two levels. Implementation-complete means code reviewed, 
tests green, and PR approved—this is fully within my control. Merged means landed in 
trunk, which additionally depends on community review bandwidth. 

D1  Four Progressive Example Scripts 
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•​ Each script is self-contained, runnable, and benchmarked with inline comments 
•​ worker_accelerator API used as canonical accelerator provisioning 

D2  Dockerfile + Container Configs 

•​ Dockerfile.gpu (CUDA + PyTorch) and Dockerfile.tpu (torch_xla + 
libtpu) 

D3  Continuous Freshness Pipeline 

•​ Tier 1: Nightly pytest + TestPipeline on CPU (GitHub Actions, free) 

•​ Tier 2: Weekly scheduled Dataflow smoke run (lightweight, ~$0.50/run) 
validating GPU path end-to-end 

D4  Blog Post (~3000 words) 

•​ Published on beam.apache.org with benchmark charts, architecture diagrams, 
and cost analysis 

D5  Cost vs. Speed Cheat Sheet 

•​ CPU / T4 / L4 / TPU comparison table embedded in blog and README 

4. Technical Approach 
Note on code snippets: All code blocks in this proposal are illustrative. Final, fully 
runnable examples—with complete imports, pipeline options, and error handling—will 
live in examples/... alongside the shipped SDK. 

4.1  Stage 1 – CPU Baseline 

Goal 
Establish a performance baseline using a standard Beam RunInference pipeline on 
CPU. Runs locally in under 5 minutes with no cloud setup. 

Model & Dataset 
ResNet-18 pretrained on ImageNet, evaluated on CIFAR-10 (60K images, ~170 MB). 
Built into torchvision—no manual download required. 

Pipeline Architecture 

# Stage 1: cpu_inference.py 
import apache_beam as beam 
from apache_beam.ml.inference.pytorch_inference import 
PytorchModelHandlerTensor 
  
model_handler = PytorchModelHandlerTensor( 
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    model_class=torchvision.models.resnet18, 
    model_params={"weights": "IMAGENET1K_V1"}, 
) 
  
with beam.Pipeline() as p: 
    _ = ( 
        p 
        | "LoadCIFAR" >> beam.Create(load_cifar10_tensors()) 
        | "Inference" >> RunInference(model_handler) 
        | "Accuracy"  >> beam.CombineGlobally(AccuracyFn()) 
        | "Log"       >> beam.Map(print) 
    ) 

Expected output: ~50 images/sec on a modern laptop. 

4.2  Stage 2 – GPU Acceleration 

New Concept: worker_accelerator + resource_hints 

This stage introduces the worker_accelerator flag and resource_hints API for 
provisioning GPU workers on Dataflow. Per the Dataflow GPU support docs, 
provisioning uses the type:ACCELERATOR;count:N;install-nvidia-driver 
syntax. 

Note: On Dataflow, --worker_accelerator provisions the actual GPU/TPU 
workers. resource_hints annotates the specific transform that benefits from an 
accelerator (readability today, and runner placement/portability over time). In these 
examples, GPUs use both; TPUs are provisioned via --worker_accelerator only. 

Pipeline Changes (Diff from Stage 1) 

# Stage 2: gpu_inference.py  (changes from Stage 1 highlighted) 
# NEW: resource hints for GPU provisioning 
| "Inference" >> RunInference(model_handler).with_resource_hints( 
    accelerator="type:nvidia-tesla-t4;count:1;install-nvidia-driver" 
  ) 
  
# NEW: Dataflow runner options 
pipeline_options = PipelineOptions([ 
    "--runner=DataflowRunner", 
    "--project=PROJECT_ID", 
    "--region=us-central1", 
    "--temp_location=gs://BUCKET/tmp", 
    "--sdk_container_image=CUSTOM_IMAGE", 
    # For GPU workers: 
    
"--worker_accelerator=type:nvidia-tesla-t4;count:1;install-nvidia-driver", 
]) 

Custom Docker Image 

# Dockerfile.gpu 
FROM apache/beam_python3.11_sdk:2.63.0 
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RUN pip install torch==2.5.0 torchvision==0.20.0 \ 
    --index-url https://download.pytorch.org/whl/cu121 
COPY stages/ /app/stages/ 

Expected output: ~500–1000 images/sec. ~10–20× speedup over CPU baseline. 

4.3  Stage 3 – TPU Training 

New Concept: Training on Accelerators 

This is the first Beam example that demonstrates model training (not just inference). 
TPU training uses torch_xla; GPU training uses native CUDA PyTorch. The pipeline 
logic (TrainModelDoFn) is shared across backends via a thin get_device() 
abstraction. 

Why Training in Beam? 

Beam is not a replacement for Ray Train or PyTorch DDP for large-scale distributed 
pretraining. This project positions Beam for three scenarios where its pipeline model is 
uniquely suited: (1) partitioned fine-tuning (train separate models per customer/region), 
(2) hyperparameter sweeps (embarrassingly parallel grid search), and (3) online 
learning as part of a streaming pipeline. 

Device Abstraction 

Training uses torch_xla for TPU; GPU uses standard CUDA PyTorch. The 
get_device() helper selects the backend based on PJRT_DEVICE (set in our TPU 
Docker image). On GPU workers, PJRT_DEVICE is absent, so torch_xla is never 
imported—eliminating the risk of accidentally running XLA on CUDA hardware. 

# device_utils.py 
import os 
import torch 
  
def get_device(backend: str = "auto") -> torch.device: 
    """ 
    Select device backend: 'tpu', 'gpu', 'cpu', or 'auto'. 
  
    - 'tpu': use torch_xla (expects TPU runtime / PJRT). 
    - 'gpu': use native CUDA PyTorch. 
    - 'cpu': always CPU. 
    - 'auto': use TPU only when PJRT_DEVICE=TPU (Dataflow TPU 
              image), otherwise use CUDA if available, else CPU. 
  
    Note: We intentionally do NOT attempt to run XLA on GPU 
    workers. 
    """ 
    backend = (backend or "auto").lower() 
  
    # TPU path (explicit or environment-indicated) 
    if backend == "tpu" or ( 
        backend == "auto" 
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        and os.getenv("PJRT_DEVICE", "").upper() == "TPU" 
    ): 
        import torch_xla.core.xla_model as xm 
        return xm.xla_device() 
  
    # GPU path (explicit or auto) 
    if backend in ("gpu", "auto"): 
        if torch.cuda.is_available(): 
            return torch.device("cuda") 
        if backend == "gpu": 
            raise RuntimeError( 
                "GPU requested but CUDA is not available." 
            ) 
  
    return torch.device("cpu") 
  
  
def sync_device(device: torch.device): 
    """Flush XLA computation graph. No-op for CUDA/CPU.""" 
    if "xla" in str(device): 
        import torch_xla.core.xla_model as xm 
        xm.mark_step() 

TrainModelDoFn 

class TrainModelDoFn(beam.DoFn): 
    """Trains a model on a single accelerator per worker.""" 
  
    def setup(self): 
        # BEAM_ACCELERATOR_BACKEND can be set in Dockerfile: 
        #   ENV BEAM_ACCELERATOR_BACKEND=tpu   (TPU image) 
        #   not set / "auto"                   (GPU image) 
        self.device = get_device( 
            os.getenv("BEAM_ACCELERATOR_BACKEND", "auto") 
        ) 
  
    def process(self, config: TrainingConfig): 
        model = build_model(config.model_name).to(self.device) 
        optimizer = torch.optim.Adam( 
            model.parameters(), lr=config.learning_rate 
        ) 
        train_loader = get_cifar10_loader(config.batch_size) 
        test_loader = get_cifar10_loader( 
            config.batch_size, split="test" 
        ) 
  
        checkpoint_path = None 
        for epoch in range(config.epochs): 
            for batch_x, batch_y in train_loader: 
                batch_x = batch_x.to(self.device) 
                batch_y = batch_y.to(self.device) 
                loss = F.cross_entropy(model(batch_x), batch_y) 
                loss.backward() 
                optimizer.step() 
                optimizer.zero_grad() 
                sync_device(self.device)  # flush XLA graph 
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            # Checkpoint every epoch to GCS (fault tolerance) 
            checkpoint_path = save_checkpoint( 
                model, config, epoch, 
                f"gs://{BUCKET}/checkpoints/" 
            ) 
  
        accuracy = evaluate(model, test_loader, self.device) 
        yield TrainingResult( 
            experiment_id=config.experiment_id, 
            accuracy=accuracy, model_path=checkpoint_path, 
        ) 
  
    def teardown(self): 
        if "xla" in str(self.device): 
            import torch_xla.core.xla_model as xm 
            xm.mark_step()  # flush any pending XLA ops 
        elif torch.cuda.is_available(): 
            torch.cuda.empty_cache() 

TPU Docker Image & Provisioning 

# Dockerfile.tpu 
FROM apache/beam_python3.11_sdk:2.63.0 
RUN pip install torch~=2.5.0 torchvision~=0.20.0 \ 
    torch_xla[tpu]~=2.5.0 \ 
    -f https://storage.googleapis.com/libtpu-releases/index.html 
ENV PJRT_DEVICE=TPU 
ENV TPU_SKIP_MDS_QUERY=1 
ENV BEAM_ACCELERATOR_BACKEND=tpu 
COPY stages/ /app/stages/ 

# TPU Dataflow launch command 
# Uses worker_accelerator with type + topology syntax. 
# TPU_TYPE depends on region availability (e.g. v5e / v5 lite); 
# we will document the verified value with links to Dataflow 
# TPU docs once quota is confirmed during community bonding. 
python tpu_training.py \ 
    --runner=DataflowRunner \ 
    --project=PROJECT_ID \ 
    --worker_accelerator=type:TPU_TYPE;topology:1x1 \ 
    --sdk_container_image=TPU_IMAGE \ 
    --dataflow_service_options=enable_prime 

TPU Topology Note 

This project uses embarrassingly parallel training: each Dataflow worker gets one 
TPU chip and trains independently (topology:1x1). We are not doing multi-node 
distributed training. Each worker sees itself as the only TPU node. For larger topologies 
and multi-host training, see the Dataflow TPU documentation. 

4.4  Stage 4 – Parallel Training Pipeline 

New Concept: Embarrassingly Parallel ML 

Page 9 

https://cloud.google.com/dataflow/docs/tpu/use-tpus


GSoC 2026 — From Zero to TPU 

This stage demonstrates Beam’s unique strength: distributing 18 independent training 
jobs across GPU/TPU workers with automatic result aggregation. 

 

 
 

# Stage 4: parallel_training_pipeline.py 
configs = generate_grid_search( 
    learning_rates=[0.01, 0.001, 0.0001], 
    batch_sizes=[16, 32, 64], 
    models=["resnet18", "resnet34"], 
)  # 3 x 3 x 2 = 18 parallel training jobs 
  
with beam.Pipeline(options=opts) as p: 
    results = ( 
        p 
        | beam.Create(configs) 
        | beam.Reshuffle()        # CRITICAL: distribute across workers 
        | beam.ParDo(TrainModelDoFn()).with_resource_hints( 
            accelerator="type:nvidia-tesla-t4;count:1;install-nvidia-driver" 
          ) 
    ) 
    # Select best model 
    _ = ( 
        results 
        | beam.CombineGlobally(BestModelFn()) 
        | beam.ParDo(DeployBestModelFn("gs://BUCKET/serving/")) 
    ) 
    # Save all results 
    _ = ( 
        results 
        | beam.Map(lambda r: json.dumps(asdict(r))) 
        | beam.io.WriteToText("gs://BUCKET/results/all") 
    ) 
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beam.Reshuffle() is critical—without it, Dataflow may process all 18 configs 
sequentially on a single worker. 

worker_accelerator API Note 

Both GPU and TPU use the same --worker_accelerator flag syntax. GPU: 
type:nvidia-tesla-t4;count:1;install-nvidia-driver. TPU: 
type:TPU_TYPE;topology:1x1 (the exact TPU type depends on region 
availability—e.g. v5e or v5 lite; we will document the verified value once quota is 
confirmed). The resource_hints API supports GPU (via 
with_resource_hints(accelerator=...)) but does not yet support TPU 
provisioning. This project documents both the flag-based and hints-based paths, noting 
which accelerators each currently covers. 

4.5  Continuous Freshness Strategy 
Example rot is the #1 threat to this project’s long-term value. The freshness strategy 
has three tiers, designed so that examples stay validated automatically—not just when 
a maintainer remembers to trigger a test. 

Tier 1: Nightly Mock Tests (Free) 
GitHub Actions runs pytest + TestPipeline on CPU every night. Validates pipeline 
DAG construction, DoFn lifecycle, and data flow without any cloud resources. 

# ci/test_cpu_mock.py 
def test_train_dofn_produces_result(): 
    """TrainModelDoFn completes 1 epoch on CPU with 10 images.""" 
    config = TrainingConfig( 
        experiment_id="test", epochs=1, 
        batch_size=2, learning_rate=0.001, 
    ) 
    with TestPipeline() as p: 
        results = ( 
            p 
            | beam.Create([config]) 
            | beam.ParDo(TrainModelDoFn()) 
        ) 
        assert_that( 
            results | beam.Map(lambda r: r.experiment_id), 
            equal_to(["test"]) 
        ) 
  
def test_best_model_fn(): 
    """BestModelFn selects config with highest accuracy.""" 
    results = [ 
        TrainingResult("a", accuracy=0.85, model_path="gs://a"), 
        TrainingResult("b", accuracy=0.92, model_path="gs://b"), 
    ] 
    with TestPipeline() as p: 
        best = ( 
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            p 
            | beam.Create(results) 
            | beam.CombineGlobally(BestModelFn()) 
        ) 
        assert_that( 
            best | beam.Map(lambda r: r.experiment_id), 
            equal_to(["b"]) 
        ) 

Tier 2: Weekly Scheduled Dataflow Smoke Run (~$0.50/run) 
A cron-triggered GitHub Action launches a lightweight Dataflow job every Monday 
that runs Stage 2 (GPU inference on 1000 images) end-to-end. This catches Docker 
image breakage, SDK version drift, and Dataflow API changes before users hit them. 
Estimated cost: ~$0.50/week using a single preemptible T4 worker for ~3 minutes. 

# ci/scheduled_smoke.yml 
name: Weekly Dataflow Smoke 
on: 
  schedule: [{cron: '0 8 * * 1'}]  # Every Monday 8am UTC 
jobs: 
  smoke-test: 
    runs-on: ubuntu-latest 
    steps: 
      - uses: actions/checkout@v4 
      - uses: google-github-actions/auth@v2 
        with: 
          credentials_json: ${{ secrets.GCP_SA_KEY }} 
      - run: | 
          python stages/gpu_inference.py \ 
            --runner=DataflowRunner \ 
            --num_images=1000 \ 
            
--worker_accelerator=type:nvidia-tesla-t4;count:1;install-nvidia-driver \ 
            --max_num_workers=1 
      - run: python ci/verify_output.py  # check results exist 

Tier 3: Full Integration (On-Demand) 
For TPU and Stage 4 validation, run_integration.sh can be triggered manually via 
a ci/run-integration GitHub label. This is for pre-release validation, not 
continuous freshness. 

Clarification on “continuous freshness”: Tests run at three cadences: nightly 
(mock/DirectRunner), weekly (Dataflow smoke with CPU/GPU), and on-demand (TPU 
integration, triggered manually or before releases). “Continuous freshness” refers to the 
nightly + weekly tiers; TPU runs are intentionally on-demand to manage cost. 

4.6  Cost vs. Speed Cheat Sheet 
Preliminary estimates for CIFAR-10 (ResNet-18, 10 epochs). TPU values are estimates 
to be validated during Week 8–9. 
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Metric CPU 
(n1-std-4) 

T4 GPU L4 GPU TPU v5e* 

Inference (img/s) ~50 ~600 ~900 ~1200* 

Train time (10 ep) ~45 min ~8 min ~5 min ~4 min* 

$/hr $0.19 $0.95 $1.22 $1.20* 

Total cost (1 job) $0.14 $0.13 $0.10 $0.08* 

Speedup vs CPU 1× ~5.6× ~9× ~11×* 
* TPU values are estimates; will be updated after Week 8–9 benchmarks. 

5. Timeline (12 Weeks) 
Coding period: June 2 – August 25, 2026 (aligned with the official GSoC 2026 
calendar). Each week targets a single objective. If Phase 2 runs over, stretch goal time 
is compressed—core development time is protected. 

Week Objective Deliverable Acceptance Criteria 

W1 (Jun 2) Stage 1: CPU baseline + 
benchmarks 

cpu_inference.py Runs locally, outputs 
img/s 

W2 (Jun 9) Stage 2: GPU Dockerfile + 
worker_accelerator 

Dockerfile.gpu Docker build succeeds; 
GPU detected 

W3 (Jun 16) Stage 2: Deploy GPU 
inference to Dataflow 

gpu_inference.py 10×+ speedup on 
Dataflow 

W4 (Jun 23) Stage 3: Design 
TrainModelDoFn + 
device_utils 

Design doc Mentor review + 
sign-off 

W5 (Jun 30) Stage 3: Implement training 
loop + checkpointing 

tpu_training.py 
(CPU) 

1-epoch train 
completes on CPU 
mock 

W6 (Jul 7) Stage 3: TPU Dockerfile + 
Colab TPU VM test 

Dockerfile.tpu Training runs on Colab 
TPU VM 

★ 
MIDTERM(Jul 
14–18) 

Stages 1–3 
implementation-complete. 
Submit midterm 
evaluation. 

PRs open for 
review 

All mock tests green 

W7 (Jul 21) Stage 3: Deploy training to 
Dataflow TPU 

TPU Dataflow job Accuracy ≥ 80%; 
checkpoint in GCS 

W8 (Jul 28) Stage 4: Parallel pipeline + 
Reshuffle 

parallel_training.py 18 configs distributed 
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W9 (Aug 4) Stage 4: BestModelFn + 
end-to-end sweep 

Results JSON Best model 
auto-selected 

W10 (Aug 11) CI: Tier 1 mocks + Tier 2 
scheduled smoke 

ci/ directory Nightly + weekly smoke 
green 

W11 (Aug 18) Blog post + Cost vs Speed 
cheat sheet 

Blog draft ~3000 words; 
benchmarks included 

W12 (Aug 25) Review feedback + docs 
polish + final eval 

All PRs updated CI green ≥ 14 days; 
eval submitted 

 

TPU Fallback: If TPU quota is denied, Stage 3 runs on GPU (same code, different 
device via get_device()). TPU validation deferred to Tier 3 CI. 

6. Testing Strategy 
6.1 Unit Tests (pytest, CPU) 

•​ TrainModelDoFn: verify 1-epoch training completes, produces 
TrainingResult 

•​ BestModelFn: verify selection of highest-accuracy result 

•​ get_device(): verify fallback chain (TPU → GPU → CPU) using mock imports 

•​ Pickle round-trip for TrainingConfig and TrainingResult dataclasses 

6.2 Scheduled Smoke Tests (Dataflow) 
•​ Weekly GPU inference end-to-end on Dataflow (Tier 2, automated) 
•​ Validates Docker image, SDK version, and Dataflow API compatibility 

6.3 Integration Tests (On-Demand) 
•​ Stage 3: TPU training with checkpoint written to GCS 
•​ Stage 4: 18-config parallel sweep completes, best model selected 

6.4 Container Validation 

Container-first development: test locally with docker run --gpus all before 
deploying to Dataflow, ensuring custom image and dependencies are validated before 
cloud execution. 

7. Risks & Mitigations 

Risk Detail Mitigation 
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TPU quota denied v5e quota is limited and may require 
manual approval. 

Request during bonding 
period. Develop on Colab 
TPU VM (free). GPU 
fallback: same code, 
different device. 

torch_xla + Beam 
conflict 

torch_xla multi-processing may conflict 
with Beam worker harness. 

Set 
number_of_worker_harness
_threads=1. Known to work 
per Dataflow TPU 
quickstart. 

Works locally, fails 
on Dataflow 

Docker image differences, missing 
deps, SDK version mismatch. 

Container-first dev: always 
test in Docker locally before 
cloud deploy. 

Training too slow CIFAR-10 is small, but Docker cold start 
+ GCS data loading adds overhead. 

Pre-stage data to GCS. ~2 
min/epoch on T4. Pattern 
demo, not prod-scale. 

Worker preemption Dataflow workers can be preempted 
mid-training. 

Checkpoint every epoch to 
GCS. Demonstrates 
fault-tolerant training. 

Scope creep Temptation to add TensorRT, streaming, 
multi-node distributed. 

All explicitly out of scope. 
Single-chip embarrassingly 
parallel only. 

8. About Me 
I am Elia Liu, a final-year computer science student at the University of Melbourne. I 
have been contributing to Apache Beam’s Python SDK and am drawn to this project 
because making hardware accelerators accessible to ML practitioners is one of the 
most impactful things the Beam community can do right now. 

8.1 Prior Contributions to Apache Beam 
PR #37299  Fixed a production stability bug in ExternalTransform.expand() 
where direct access to _type_hints raised an AttributeError. Replaced with 
get_type_hints(). Gave me hands-on experience with Beam’s transform expansion 
internals. 

PR #37428  Added content-aware dynamic batching to RunInference via 
element_size_fn. Enables batching by actual content cost (token count, pixel count) 
for efficient GPU utilization. Sits squarely in Beam ML space. 

8.2 Why Me 
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•​ Python + PyTorch: Both merged PRs involved production-quality Python with 
pytest coverage. Extensive PyTorch experience from coursework and personal 
projects. 

•​ Full-stack background: Java/React experience gives me an architectural 
understanding of Beam’s SDK internals and runner model, useful for debugging 
cross-language and pipeline construction issues. 

•​ AI Infrastructure: Hands-on Docker + GCP experience. Familiar with custom 
container workflows, Dataflow deployment, and GCS integration—exactly the 
toolchain this project demands. 

•​ Documentation focus: I understand where jargon confuses beginners—exactly 
what this project needs. My PRs include detailed descriptions and inline 
comments. 

8.3 Availability 
I can dedicate approximately 30 hours/week, consistent with the 350-hour budget over 
12 weeks. No major conflicts. 

9. Communication Plan 
Weekly video call with Pablo Estrada. Async updates on Beam dev mailing list. Draft 
PRs opened early for community visibility. Design docs shared as Google Docs before 
implementation. Review feedback addressed within 24 hours. 

Pre-GSoC plan: Submit at least 1 additional PR to apache/beam before coding starts 
(e.g., fix a broken ML notebook). 

10. References 
[1] Beam ML Dataflow TPU Examples 
[2] Beam RunInference API 
[3] Dataflow GPU Support 
[4] Dataflow TPU Support 
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[6] Beam resource_hints API 
[7] PR #37299 – ExternalTransform fix 
[8] PR #37428 – RunInference dynamic batching 
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