

Google Summer of Code 2026 Proposal

A Learning Path to Using Hardware Accelerators with

Apache Beam

From Zero to TPU: Progressive Examples for ML Training & Inference

Applicant Elia Liu
Email elialiulzy@gmail.com

GitHub github.com/Eliaaazzz
Organization The Apache Software

Foundation (Apache Beam)
Mentors Pablo Estrada

(pabloem@apache.org)
Project Size ~350 hours (Large) ·

Difficulty: Major

https://github.com/Eliaaazzz

GSoC 2026 — From Zero to TPU

Table of Contents

1. Abstract
2. Current Gaps
3. Project Goals and Deliverables
4. Technical Approach

4.1 Stage 1 – CPU Baseline
4.2 Stage 2 – GPU Acceleration
4.3 Stage 3 – TPU Training
4.4 Stage 4 – Parallel Training Pipeline
4.5 Continuous Freshness Strategy
4.6 Cost vs. Speed Cheat Sheet

5. Timeline (12 Weeks)
6. Testing Strategy
7. Risks & Mitigations
8. About Me
9. Communication Plan
10. References

Page 2

GSoC 2026 — From Zero to TPU

1. Abstract
Apache Beam supports GPU and TPU accelerators via Dataflow, but users face a “cliff”
between a local Python script and a working accelerated pipeline. Existing notebooks
jump directly to complex configurations with no intermediate steps, and zero examples
demonstrate model training (only inference). Meanwhile, the examples that do exist
reference outdated versions (apache-beam[gcp]==2.44.0) and break silently over
time.

This project builds a 4-stage progressive learning path — from CPU baseline to
TPU-accelerated parallel training — plus a sustainable CI strategy and a reference blog
post. Three technical innovations:

•​ Modern worker_accelerator + resource_hints API as the canonical way
to provision accelerators

•​ Shared code structure — TPU training via torch_xla, GPU via native CUDA
PyTorch, with a thin get_device() abstraction that keeps the pipeline logic
identical

•​ Scheduled smoke runs + nightly mocks that validate freshness continuously
without manual intervention

2. Current Gaps
Gap #1: The Configuration Cliff
The simplest existing GPU example (run_inference_tensorflow.ipynb)
immediately requires a custom Docker image, Runner v2, worker_accelerator
flags, and GCS bucket setup. There is no “Hello GPU” that takes 5 minutes.

Page 3

GSoC 2026 — From Zero to TPU

Gap #2: No Performance Comparison

No existing example benchmarks CPU vs GPU vs TPU on the same task. Users cannot
answer: “Is the $3.80/hr GPU worker worth it compared to 8 CPU workers at $0.07/hr
each?”

Gap #3: Inference Only, No Training

The Beam ML docs list “Model training” as a supported lifecycle step, but link to zero
examples. All 15+ notebooks use RunInference for prediction. Users who need to
fine-tune models inside a Beam pipeline have no reference architecture.

Gap #4: Example Rot
The TensorRT Dockerfile still references apache-beam[gcp]==2.44.0 and
torch==1.13.1. Without CI to validate them, examples silently decay. This project
addresses freshness with scheduled Dataflow smoke runs — not just
maintainer-triggered tests.

3. Project Goals and Deliverables

3.1 Learning Path Overview
Each stage introduces exactly one new concept. A user can stop at any stage and still
have a working, useful example.

Stage New Concept Script Outcome

1 CPU baseline cpu_inference.py Performance baseline

2 GPU +
worker_accelerator

gpu_inference.py ~10–20× speedup

3 TPU + training tpu_training.py First Beam training
example

4 Parallel sweep parallel_training.py 18 models trained in
parallel

3.2 Deliverables with Acceptance Criteria
Completion is defined at two levels. Implementation-complete means code reviewed,
tests green, and PR approved—this is fully within my control. Merged means landed in
trunk, which additionally depends on community review bandwidth.

D1 Four Progressive Example Scripts

Page 4

GSoC 2026 — From Zero to TPU

•​ Each script is self-contained, runnable, and benchmarked with inline comments
•​ worker_accelerator API used as canonical accelerator provisioning

D2 Dockerfile + Container Configs

•​ Dockerfile.gpu (CUDA + PyTorch) and Dockerfile.tpu (torch_xla +
libtpu)

D3 Continuous Freshness Pipeline

•​ Tier 1: Nightly pytest + TestPipeline on CPU (GitHub Actions, free)

•​ Tier 2: Weekly scheduled Dataflow smoke run (lightweight, ~$0.50/run)
validating GPU path end-to-end

D4 Blog Post (~3000 words)

•​ Published on beam.apache.org with benchmark charts, architecture diagrams,
and cost analysis

D5 Cost vs. Speed Cheat Sheet

•​ CPU / T4 / L4 / TPU comparison table embedded in blog and README

4. Technical Approach
Note on code snippets: All code blocks in this proposal are illustrative. Final, fully
runnable examples—with complete imports, pipeline options, and error handling—will
live in examples/... alongside the shipped SDK.

4.1 Stage 1 – CPU Baseline

Goal
Establish a performance baseline using a standard Beam RunInference pipeline on
CPU. Runs locally in under 5 minutes with no cloud setup.

Model & Dataset
ResNet-18 pretrained on ImageNet, evaluated on CIFAR-10 (60K images, ~170 MB).
Built into torchvision—no manual download required.

Pipeline Architecture

Stage 1: cpu_inference.py
import apache_beam as beam
from apache_beam.ml.inference.pytorch_inference import
PytorchModelHandlerTensor

model_handler = PytorchModelHandlerTensor(

Page 5

GSoC 2026 — From Zero to TPU

 model_class=torchvision.models.resnet18,
 model_params={"weights": "IMAGENET1K_V1"},
)

with beam.Pipeline() as p:
 _ = (
 p
 | "LoadCIFAR" >> beam.Create(load_cifar10_tensors())
 | "Inference" >> RunInference(model_handler)
 | "Accuracy" >> beam.CombineGlobally(AccuracyFn())
 | "Log" >> beam.Map(print)
)

Expected output: ~50 images/sec on a modern laptop.

4.2 Stage 2 – GPU Acceleration

New Concept: worker_accelerator + resource_hints

This stage introduces the worker_accelerator flag and resource_hints API for
provisioning GPU workers on Dataflow. Per the Dataflow GPU support docs,
provisioning uses the type:ACCELERATOR;count:N;install-nvidia-driver
syntax.

Note: On Dataflow, --worker_accelerator provisions the actual GPU/TPU
workers. resource_hints annotates the specific transform that benefits from an
accelerator (readability today, and runner placement/portability over time). In these
examples, GPUs use both; TPUs are provisioned via --worker_accelerator only.

Pipeline Changes (Diff from Stage 1)

Stage 2: gpu_inference.py (changes from Stage 1 highlighted)
NEW: resource hints for GPU provisioning
| "Inference" >> RunInference(model_handler).with_resource_hints(
 accelerator="type:nvidia-tesla-t4;count:1;install-nvidia-driver"
)

NEW: Dataflow runner options
pipeline_options = PipelineOptions([
 "--runner=DataflowRunner",
 "--project=PROJECT_ID",
 "--region=us-central1",
 "--temp_location=gs://BUCKET/tmp",
 "--sdk_container_image=CUSTOM_IMAGE",
 # For GPU workers:

"--worker_accelerator=type:nvidia-tesla-t4;count:1;install-nvidia-driver",
])

Custom Docker Image

Dockerfile.gpu
FROM apache/beam_python3.11_sdk:2.63.0

Page 6

https://cloud.google.com/dataflow/docs/gpu/gpu-support

GSoC 2026 — From Zero to TPU

RUN pip install torch==2.5.0 torchvision==0.20.0 \
 --index-url https://download.pytorch.org/whl/cu121
COPY stages/ /app/stages/

Expected output: ~500–1000 images/sec. ~10–20× speedup over CPU baseline.

4.3 Stage 3 – TPU Training

New Concept: Training on Accelerators

This is the first Beam example that demonstrates model training (not just inference).
TPU training uses torch_xla; GPU training uses native CUDA PyTorch. The pipeline
logic (TrainModelDoFn) is shared across backends via a thin get_device()
abstraction.

Why Training in Beam?

Beam is not a replacement for Ray Train or PyTorch DDP for large-scale distributed
pretraining. This project positions Beam for three scenarios where its pipeline model is
uniquely suited: (1) partitioned fine-tuning (train separate models per customer/region),
(2) hyperparameter sweeps (embarrassingly parallel grid search), and (3) online
learning as part of a streaming pipeline.

Device Abstraction

Training uses torch_xla for TPU; GPU uses standard CUDA PyTorch. The
get_device() helper selects the backend based on PJRT_DEVICE (set in our TPU
Docker image). On GPU workers, PJRT_DEVICE is absent, so torch_xla is never
imported—eliminating the risk of accidentally running XLA on CUDA hardware.

device_utils.py
import os
import torch

def get_device(backend: str = "auto") -> torch.device:
 """
 Select device backend: 'tpu', 'gpu', 'cpu', or 'auto'.

 - 'tpu': use torch_xla (expects TPU runtime / PJRT).
 - 'gpu': use native CUDA PyTorch.
 - 'cpu': always CPU.
 - 'auto': use TPU only when PJRT_DEVICE=TPU (Dataflow TPU
 image), otherwise use CUDA if available, else CPU.

 Note: We intentionally do NOT attempt to run XLA on GPU
 workers.
 """
 backend = (backend or "auto").lower()

 # TPU path (explicit or environment-indicated)
 if backend == "tpu" or (
 backend == "auto"

Page 7

GSoC 2026 — From Zero to TPU

 and os.getenv("PJRT_DEVICE", "").upper() == "TPU"
):
 import torch_xla.core.xla_model as xm
 return xm.xla_device()

 # GPU path (explicit or auto)
 if backend in ("gpu", "auto"):
 if torch.cuda.is_available():
 return torch.device("cuda")
 if backend == "gpu":
 raise RuntimeError(
 "GPU requested but CUDA is not available."
)

 return torch.device("cpu")

def sync_device(device: torch.device):
 """Flush XLA computation graph. No-op for CUDA/CPU."""
 if "xla" in str(device):
 import torch_xla.core.xla_model as xm
 xm.mark_step()

TrainModelDoFn

class TrainModelDoFn(beam.DoFn):
 """Trains a model on a single accelerator per worker."""

 def setup(self):
 # BEAM_ACCELERATOR_BACKEND can be set in Dockerfile:
 # ENV BEAM_ACCELERATOR_BACKEND=tpu (TPU image)
 # not set / "auto" (GPU image)
 self.device = get_device(
 os.getenv("BEAM_ACCELERATOR_BACKEND", "auto")
)

 def process(self, config: TrainingConfig):
 model = build_model(config.model_name).to(self.device)
 optimizer = torch.optim.Adam(
 model.parameters(), lr=config.learning_rate
)
 train_loader = get_cifar10_loader(config.batch_size)
 test_loader = get_cifar10_loader(
 config.batch_size, split="test"
)

 checkpoint_path = None
 for epoch in range(config.epochs):
 for batch_x, batch_y in train_loader:
 batch_x = batch_x.to(self.device)
 batch_y = batch_y.to(self.device)
 loss = F.cross_entropy(model(batch_x), batch_y)
 loss.backward()
 optimizer.step()
 optimizer.zero_grad()
 sync_device(self.device) # flush XLA graph

Page 8

GSoC 2026 — From Zero to TPU

 # Checkpoint every epoch to GCS (fault tolerance)
 checkpoint_path = save_checkpoint(
 model, config, epoch,
 f"gs://{BUCKET}/checkpoints/"
)

 accuracy = evaluate(model, test_loader, self.device)
 yield TrainingResult(
 experiment_id=config.experiment_id,
 accuracy=accuracy, model_path=checkpoint_path,
)

 def teardown(self):
 if "xla" in str(self.device):
 import torch_xla.core.xla_model as xm
 xm.mark_step() # flush any pending XLA ops
 elif torch.cuda.is_available():
 torch.cuda.empty_cache()

TPU Docker Image & Provisioning

Dockerfile.tpu
FROM apache/beam_python3.11_sdk:2.63.0
RUN pip install torch~=2.5.0 torchvision~=0.20.0 \
 torch_xla[tpu]~=2.5.0 \
 -f https://storage.googleapis.com/libtpu-releases/index.html
ENV PJRT_DEVICE=TPU
ENV TPU_SKIP_MDS_QUERY=1
ENV BEAM_ACCELERATOR_BACKEND=tpu
COPY stages/ /app/stages/

TPU Dataflow launch command
Uses worker_accelerator with type + topology syntax.
TPU_TYPE depends on region availability (e.g. v5e / v5 lite);
we will document the verified value with links to Dataflow
TPU docs once quota is confirmed during community bonding.
python tpu_training.py \
 --runner=DataflowRunner \
 --project=PROJECT_ID \
 --worker_accelerator=type:TPU_TYPE;topology:1x1 \
 --sdk_container_image=TPU_IMAGE \
 --dataflow_service_options=enable_prime

TPU Topology Note

This project uses embarrassingly parallel training: each Dataflow worker gets one
TPU chip and trains independently (topology:1x1). We are not doing multi-node
distributed training. Each worker sees itself as the only TPU node. For larger topologies
and multi-host training, see the Dataflow TPU documentation.

4.4 Stage 4 – Parallel Training Pipeline

New Concept: Embarrassingly Parallel ML

Page 9

https://cloud.google.com/dataflow/docs/tpu/use-tpus

GSoC 2026 — From Zero to TPU

This stage demonstrates Beam’s unique strength: distributing 18 independent training
jobs across GPU/TPU workers with automatic result aggregation.

Stage 4: parallel_training_pipeline.py
configs = generate_grid_search(
 learning_rates=[0.01, 0.001, 0.0001],
 batch_sizes=[16, 32, 64],
 models=["resnet18", "resnet34"],
) # 3 x 3 x 2 = 18 parallel training jobs

with beam.Pipeline(options=opts) as p:
 results = (
 p
 | beam.Create(configs)
 | beam.Reshuffle() # CRITICAL: distribute across workers
 | beam.ParDo(TrainModelDoFn()).with_resource_hints(
 accelerator="type:nvidia-tesla-t4;count:1;install-nvidia-driver"
)
)
 # Select best model
 _ = (
 results
 | beam.CombineGlobally(BestModelFn())
 | beam.ParDo(DeployBestModelFn("gs://BUCKET/serving/"))
)
 # Save all results
 _ = (
 results
 | beam.Map(lambda r: json.dumps(asdict(r)))
 | beam.io.WriteToText("gs://BUCKET/results/all")
)

Page 10

GSoC 2026 — From Zero to TPU

beam.Reshuffle() is critical—without it, Dataflow may process all 18 configs
sequentially on a single worker.

worker_accelerator API Note

Both GPU and TPU use the same --worker_accelerator flag syntax. GPU:
type:nvidia-tesla-t4;count:1;install-nvidia-driver. TPU:
type:TPU_TYPE;topology:1x1 (the exact TPU type depends on region
availability—e.g. v5e or v5 lite; we will document the verified value once quota is
confirmed). The resource_hints API supports GPU (via
with_resource_hints(accelerator=...)) but does not yet support TPU
provisioning. This project documents both the flag-based and hints-based paths, noting
which accelerators each currently covers.

4.5 Continuous Freshness Strategy
Example rot is the #1 threat to this project’s long-term value. The freshness strategy
has three tiers, designed so that examples stay validated automatically—not just when
a maintainer remembers to trigger a test.

Tier 1: Nightly Mock Tests (Free)
GitHub Actions runs pytest + TestPipeline on CPU every night. Validates pipeline
DAG construction, DoFn lifecycle, and data flow without any cloud resources.

ci/test_cpu_mock.py
def test_train_dofn_produces_result():
 """TrainModelDoFn completes 1 epoch on CPU with 10 images."""
 config = TrainingConfig(
 experiment_id="test", epochs=1,
 batch_size=2, learning_rate=0.001,
)
 with TestPipeline() as p:
 results = (
 p
 | beam.Create([config])
 | beam.ParDo(TrainModelDoFn())
)
 assert_that(
 results | beam.Map(lambda r: r.experiment_id),
 equal_to(["test"])
)

def test_best_model_fn():
 """BestModelFn selects config with highest accuracy."""
 results = [
 TrainingResult("a", accuracy=0.85, model_path="gs://a"),
 TrainingResult("b", accuracy=0.92, model_path="gs://b"),
]
 with TestPipeline() as p:
 best = (

Page 11

GSoC 2026 — From Zero to TPU

 p
 | beam.Create(results)
 | beam.CombineGlobally(BestModelFn())
)
 assert_that(
 best | beam.Map(lambda r: r.experiment_id),
 equal_to(["b"])
)

Tier 2: Weekly Scheduled Dataflow Smoke Run (~$0.50/run)
A cron-triggered GitHub Action launches a lightweight Dataflow job every Monday
that runs Stage 2 (GPU inference on 1000 images) end-to-end. This catches Docker
image breakage, SDK version drift, and Dataflow API changes before users hit them.
Estimated cost: ~$0.50/week using a single preemptible T4 worker for ~3 minutes.

ci/scheduled_smoke.yml
name: Weekly Dataflow Smoke
on:
 schedule: [{cron: '0 8 * * 1'}] # Every Monday 8am UTC
jobs:
 smoke-test:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v4
 - uses: google-github-actions/auth@v2
 with:
 credentials_json: ${{ secrets.GCP_SA_KEY }}
 - run: |
 python stages/gpu_inference.py \
 --runner=DataflowRunner \
 --num_images=1000 \

--worker_accelerator=type:nvidia-tesla-t4;count:1;install-nvidia-driver \
 --max_num_workers=1
 - run: python ci/verify_output.py # check results exist

Tier 3: Full Integration (On-Demand)
For TPU and Stage 4 validation, run_integration.sh can be triggered manually via
a ci/run-integration GitHub label. This is for pre-release validation, not
continuous freshness.

Clarification on “continuous freshness”: Tests run at three cadences: nightly
(mock/DirectRunner), weekly (Dataflow smoke with CPU/GPU), and on-demand (TPU
integration, triggered manually or before releases). “Continuous freshness” refers to the
nightly + weekly tiers; TPU runs are intentionally on-demand to manage cost.

4.6 Cost vs. Speed Cheat Sheet
Preliminary estimates for CIFAR-10 (ResNet-18, 10 epochs). TPU values are estimates
to be validated during Week 8–9.

Page 12

GSoC 2026 — From Zero to TPU

Metric CPU
(n1-std-4)

T4 GPU L4 GPU TPU v5e*

Inference (img/s) ~50 ~600 ~900 ~1200*

Train time (10 ep) ~45 min ~8 min ~5 min ~4 min*

$/hr $0.19 $0.95 $1.22 $1.20*

Total cost (1 job) $0.14 $0.13 $0.10 $0.08*

Speedup vs CPU 1× ~5.6× ~9× ~11×*
* TPU values are estimates; will be updated after Week 8–9 benchmarks.

5. Timeline (12 Weeks)
Coding period: June 2 – August 25, 2026 (aligned with the official GSoC 2026
calendar). Each week targets a single objective. If Phase 2 runs over, stretch goal time
is compressed—core development time is protected.

Week Objective Deliverable Acceptance Criteria

W1 (Jun 2) Stage 1: CPU baseline +
benchmarks

cpu_inference.py Runs locally, outputs
img/s

W2 (Jun 9) Stage 2: GPU Dockerfile +
worker_accelerator

Dockerfile.gpu Docker build succeeds;
GPU detected

W3 (Jun 16) Stage 2: Deploy GPU
inference to Dataflow

gpu_inference.py 10×+ speedup on
Dataflow

W4 (Jun 23) Stage 3: Design
TrainModelDoFn +
device_utils

Design doc Mentor review +
sign-off

W5 (Jun 30) Stage 3: Implement training
loop + checkpointing

tpu_training.py
(CPU)

1-epoch train
completes on CPU
mock

W6 (Jul 7) Stage 3: TPU Dockerfile +
Colab TPU VM test

Dockerfile.tpu Training runs on Colab
TPU VM

★
MIDTERM(Jul
14–18)

Stages 1–3
implementation-complete.
Submit midterm
evaluation.

PRs open for
review

All mock tests green

W7 (Jul 21) Stage 3: Deploy training to
Dataflow TPU

TPU Dataflow job Accuracy ≥ 80%;
checkpoint in GCS

W8 (Jul 28) Stage 4: Parallel pipeline +
Reshuffle

parallel_training.py 18 configs distributed

Page 13

GSoC 2026 — From Zero to TPU

W9 (Aug 4) Stage 4: BestModelFn +
end-to-end sweep

Results JSON Best model
auto-selected

W10 (Aug 11) CI: Tier 1 mocks + Tier 2
scheduled smoke

ci/ directory Nightly + weekly smoke
green

W11 (Aug 18) Blog post + Cost vs Speed
cheat sheet

Blog draft ~3000 words;
benchmarks included

W12 (Aug 25) Review feedback + docs
polish + final eval

All PRs updated CI green ≥ 14 days;
eval submitted

TPU Fallback: If TPU quota is denied, Stage 3 runs on GPU (same code, different
device via get_device()). TPU validation deferred to Tier 3 CI.

6. Testing Strategy
6.1 Unit Tests (pytest, CPU)

•​ TrainModelDoFn: verify 1-epoch training completes, produces
TrainingResult

•​ BestModelFn: verify selection of highest-accuracy result

•​ get_device(): verify fallback chain (TPU → GPU → CPU) using mock imports

•​ Pickle round-trip for TrainingConfig and TrainingResult dataclasses

6.2 Scheduled Smoke Tests (Dataflow)
•​ Weekly GPU inference end-to-end on Dataflow (Tier 2, automated)
•​ Validates Docker image, SDK version, and Dataflow API compatibility

6.3 Integration Tests (On-Demand)
•​ Stage 3: TPU training with checkpoint written to GCS
•​ Stage 4: 18-config parallel sweep completes, best model selected

6.4 Container Validation

Container-first development: test locally with docker run --gpus all before
deploying to Dataflow, ensuring custom image and dependencies are validated before
cloud execution.

7. Risks & Mitigations

Risk Detail Mitigation

Page 14

GSoC 2026 — From Zero to TPU

TPU quota denied v5e quota is limited and may require
manual approval.

Request during bonding
period. Develop on Colab
TPU VM (free). GPU
fallback: same code,
different device.

torch_xla + Beam
conflict

torch_xla multi-processing may conflict
with Beam worker harness.

Set
number_of_worker_harness
_threads=1. Known to work
per Dataflow TPU
quickstart.

Works locally, fails
on Dataflow

Docker image differences, missing
deps, SDK version mismatch.

Container-first dev: always
test in Docker locally before
cloud deploy.

Training too slow CIFAR-10 is small, but Docker cold start
+ GCS data loading adds overhead.

Pre-stage data to GCS. ~2
min/epoch on T4. Pattern
demo, not prod-scale.

Worker preemption Dataflow workers can be preempted
mid-training.

Checkpoint every epoch to
GCS. Demonstrates
fault-tolerant training.

Scope creep Temptation to add TensorRT, streaming,
multi-node distributed.

All explicitly out of scope.
Single-chip embarrassingly
parallel only.

8. About Me
I am Elia Liu, a final-year computer science student at the University of Melbourne. I
have been contributing to Apache Beam’s Python SDK and am drawn to this project
because making hardware accelerators accessible to ML practitioners is one of the
most impactful things the Beam community can do right now.

8.1 Prior Contributions to Apache Beam
PR #37299 Fixed a production stability bug in ExternalTransform.expand()
where direct access to _type_hints raised an AttributeError. Replaced with
get_type_hints(). Gave me hands-on experience with Beam’s transform expansion
internals.

PR #37428 Added content-aware dynamic batching to RunInference via
element_size_fn. Enables batching by actual content cost (token count, pixel count)
for efficient GPU utilization. Sits squarely in Beam ML space.

8.2 Why Me

Page 15

https://github.com/apache/beam/pull/37299
https://github.com/apache/beam/pull/37428

GSoC 2026 — From Zero to TPU

•​ Python + PyTorch: Both merged PRs involved production-quality Python with
pytest coverage. Extensive PyTorch experience from coursework and personal
projects.

•​ Full-stack background: Java/React experience gives me an architectural
understanding of Beam’s SDK internals and runner model, useful for debugging
cross-language and pipeline construction issues.

•​ AI Infrastructure: Hands-on Docker + GCP experience. Familiar with custom
container workflows, Dataflow deployment, and GCS integration—exactly the
toolchain this project demands.

•​ Documentation focus: I understand where jargon confuses beginners—exactly
what this project needs. My PRs include detailed descriptions and inline
comments.

8.3 Availability
I can dedicate approximately 30 hours/week, consistent with the 350-hour budget over
12 weeks. No major conflicts.

9. Communication Plan
Weekly video call with Pablo Estrada. Async updates on Beam dev mailing list. Draft
PRs opened early for community visibility. Design docs shared as Google Docs before
implementation. Review feedback addressed within 24 hours.

Pre-GSoC plan: Submit at least 1 additional PR to apache/beam before coding starts
(e.g., fix a broken ML notebook).

10. References
[1] Beam ML Dataflow TPU Examples
[2] Beam RunInference API
[3] Dataflow GPU Support
[4] Dataflow TPU Support
[5] torch_xla Documentation
[6] Beam resource_hints API
[7] PR #37299 – ExternalTransform fix
[8] PR #37428 – RunInference dynamic batching

Page 16

https://github.com/apache/beam/blob/master/examples/notebooks/beam-ml/dataflow_tpu_examples.ipynb
https://beam.apache.org/documentation/ml/overview/
https://cloud.google.com/dataflow/docs/gpu/gpu-support
https://cloud.google.com/dataflow/docs/tpu/use-tpus
https://pytorch.org/xla/
https://beam.apache.org/documentation/runtime/resource-hints/
https://github.com/apache/beam/pull/37299
https://github.com/apache/beam/pull/37428

	1. Abstract
	2. Current Gaps
	3. Project Goals and Deliverables
	3.1 Learning Path Overview
	3.2 Deliverables with Acceptance Criteria

	4. Technical Approach
	4.1 Stage 1 – CPU Baseline
	4.2 Stage 2 – GPU Acceleration
	4.3 Stage 3 – TPU Training
	4.4 Stage 4 – Parallel Training Pipeline
	4.5 Continuous Freshness Strategy
	4.6 Cost vs. Speed Cheat Sheet

	5. Timeline (12 Weeks)
	6. Testing Strategy
	7. Risks & Mitigations
	8. About Me
	8.1 Prior Contributions to Apache Beam
	8.2 Why Me
	8.3 Availability

	9. Communication Plan
	10. References

