
Perf Audit of theverge.com
Part 1. Paul Irish, April 2015

Load: Time till page appears to be interactive
Render blocking resources
Synchronous chain of dependent scripts
Results after adjustments

Insights
Blink Insights

Next steps
Part 2. Kenji Baheux, July 2015

Overview (network viewpoint)
Full page load
Requests until first meaningful paint

tl;dr: first meaningful first paint @12.98s
Critical path

chain of events
Optimizing the time to meaningful first paint from first paint

tl;dr: 4-5 seconds delay from first paint to first meaningful paint
Overview (timeline viewpoint)

Full page load
Events until first paint (green dotted line ~@+3.4s)
From first paint to first meaningful paint

tl;dr: Takeaways
the 4-5 seconds delay from first paint to first meaningful paint is due to:
the delay from first paint to first meaningful paint is negatively influenced by:
tl;dr: Recommendations (iteration 1)
tl;dr: Insights for Blink/Chrome

Overview

Part 1. Paul Irish, April 2015
theverge.com - chrome canary desktop (44.0.2366.0). throttled via Good 2G

Load: Time till page appears to be interactive
19 seconds until primary page content is visible

The last <script> of the original HTML completed downloading at 10s, well before the paint at 18s.
56 requests were completed before the first paint.

http://www.theverge.com/

Render blocking resources
The big issue here is all the render blocking resources.

The markup forces most of these to be render-blocking:

script[defer] would be a very easy addition for them, but unimplementable because IE8.

Synchronous chain of dependent scripts
Looking at network waterfall, the gpt.js series is all render-blocking and has a chain of three scripts forced synchronously via document.write. Every
attempt in the world should be made to use the async snippet instead.

In addition the -head.js two JS files are render blocking but not required for the initial view.

Results after adjustments
We moved gpt.js to be async and deferred two of the <head>s JS files.
We measured the time to first meaningful paint as 100% faster.

Insights
Blink Insights

● DevTools: it’s very hard to identify which of the requests are render blocking.
● Because IE8 breaks adoption of script[defer] can we ship a new name for it?
● No way to indicate [defer] on a stylesheet.
● Why doesn’t <script async> work?

Next steps
● Look at input/scroll latency while page is loading.

Part 2. Kenji Baheux, July 2015
July 2015, Kenji Baheux (kenjibaheux@chromium.org)

~ Loading (first visit) ~
/ draft (peer review) /

This section looks into Loading aspects (mainly, time to first meaningful paint) when a user visits The Verge for the first time.

Setup
Google Nexus 4 on a 3G network, Chrome 45.0.2454.6
Remote debugging from Chrome dev 45 with Devtools’ experimental filmstrip feature enabled.
First-ever-visit simulated by disabling HTTP cache in Devtools.

Goal
optimize for a fast first meaningful paint

● where “first meaningful paint” is defined as: the user can read the content above the fold

URL: http://www.theverge.com/2015/7/26/9040645/mclaren-650s-spider-first-drive
Meaningful paint:

● since this is an article page, the headline, lead and body text should be visible.
● nice to have: tag line + the time at which the article was written (in a different font)
● not required: menu iconography, image, number of new articles, tags.

Screenshot of the meaningful paint on a particular run:

mailto:kenjibaheux@chromium.org
http://www.theverge.com/2015/7/26/9040645/mclaren-650s-spider-first-drive

Overview (network viewpoint)
Full page load

Requests until first meaningful paint
tl;dr: first meaningful first paint @12.98s

This shows all the network requests until the
first meaningful paint (@12.98s), ordered by End
time.

The orange line on the right hand side indicates
the time at which the selected frame (here, the
first meaningful paint) was rendered.

Critical path

chain of events
Assets that are render-blocking affect the time it takes to be able to start painting something on the screen, and typically fonts then affect the time it takes to paint somethingmeaningful
(text content) on the screen.
Here is a filtered view of the first network requests.

It shows the potentially render-blocking assets
(JS, CSS, Font and Document) that started
before the first meaningful paint. Figuring out
which assets are actually render-blocking
currently requires to backtrack from the Initiator
and look for where the script/... was inserted
and the absence of async/defer. Here is what I
found:

Render blocking assets:
● main document
● libraries.vc262b07aa2474684.js
● verge2_head.v636dc21358088775.js
● wvq7oai.js (selfhosted TypeKit JS)

○ TypeKit’s dynamically added
d?3bb2… stylesheet

○
● advertisement.v6fdc11c.js
● vox_universal.vb3587016b9b76a58.cs

s
● verge2_a.va15ec4adffe66ff6.css
● verge2_b.v6a0600c7ac39d634.css
● sonobi.com’s morpheus_sync.vox.js

○ Sonobi.com’s dynamically
insterted trinity.js?...

● verge2_c.v8285201fd272a071.css
● googletagservices.com’s gpt.js

○ GPT’s dynamically added
pubads_impl_68r2.js

■ Pubads’s
dynamically inserted
securepubads.g.dou
bleclick.net/gampad
/ads?

● c.amazon-adsystem.com’s
amzn_ads.js

○ Amazon’s bid?=

in body
● verge2_article.v8f697f41c27d87e8.js

https://cdn0.vox-cdn.com/javascripts/libraries.vc262b07aa2474684.js
https://cdn0.vox-cdn.com/javascripts/verge2_head.v636dc21358088775.js
http://fonts.voxmedia.com/wvq7oai.js
http://use.typekit.com/c/989a7c/1w;adelle,2,XKB:N:i4,XJq:N:n1,XK9:N:n4,XKC:N:n6;ff-din-web-condensed,2,TnF:N:i6,TnG:N:n6,ThR:N:n7/d?3bb2a6e53c9684ffdc9a98f2125b2a6261538209a3995387582a703ce922f7670ad5162da44ccb4cf6dabfb1c41cac78fa8f02a6abc36423cf4317209547728601fd64f320f0fd65a9cd95addc05ea65f3263f58084a627550e34f986d2ee0c61c335af228a0efd0bf6354576b76a163ed081716a83224ade087b23d5176289d37d17a77184d5ae42eb85b0588521ea5634fa5c864cbe1296c9d614cd2ebac160f3f5df4ebee2ad0c9dd1292fbd2052828b5216b29abc0aa09e986d390fa5ced96d894cd1a79fa208ba8df52ac42e8719c1eb38969469e9eceafde55e6f6916eec7ed9aed89326f204ee7269d89fdc151c498269f4c477c1
http://fonts.voxmedia.com/wvq7oai.js
https://cdn0.vox-cdn.com/stylesheets/vox_universal.vb3587016b9b76a58.css
https://cdn0.vox-cdn.com/stylesheets/vox_universal.vb3587016b9b76a58.css
https://cdn0.vox-cdn.com/stylesheets/verge2_a.va15ec4adffe66ff6.css
https://cdn0.vox-cdn.com/stylesheets/verge2_b.v6a0600c7ac39d634.css
http://mtrx.go.sonobi.com/morpheus_sync.vox.js
http://apex.go.sonobi.com/trinity.js?key_maker=
https://cdn0.vox-cdn.com/stylesheets/verge2_c.v8285201fd272a071.css
http://www.googletagservices.com/tag/js/gpt.js
http://partner.googleadservices.com/gpt/pubads_impl_68r2.js
https://securepubads.g.doubleclick.net/gampad/ads?
https://securepubads.g.doubleclick.net/gampad/ads?
https://securepubads.g.doubleclick.net/gampad/ads?
http://c.amazon-adsystem.com/aax2/amzn_ads.js
http://aax.amazon-adsystem.com/e/dtb/bid?src=
https://cdn0.vox-cdn.com/javascripts/verge2_article.v8f697f41c27d87e8.js

● verge2_body.va053b7a4c81fd582.js
● 66960X1514734.skimlinks.js

Meaningful paint blocking assets:
● fonts served as dataURI from TypeKit
● selfhosted font for iconongraphy

(verge-font-icons.vf102409.woff)

Optimizing the time tomeaningful first paint from first paint
I believe that the delay between first paint (@7.09s) and first meaningful paint (@12.98s) can be explained by the following diagram (bear with me ;)

Claret highlighted thumbnail:first paint (white
page, pretty much meaningless but that’s our
start).

Claret line: timestamp for first paint. Observe
that it happens right before the request for
TypeKit’s stylesheet.

Purple highlighted thumbnail: first meaningful
paint.

Purple line: timestamp for first meaningful
paint. Observe that it happens quite a while after
we got TypeKit’s stylesheet.

Green entries and lines: web font related assets
and timestamps

1. TypeKit’s webfont loader JS
2. TypeKit’s stylesheet containing the

font-face definitions and embedded
fonts

3. TypeKit’s embedded fonts
○ Surprisingly, these still took

300-500ms to deal with...

2 giant green arrows on the left side indicating
that:

1. TypeKit’s web font loader kicks the
stylesheet request

2. TypeKit’s web fonts are defined (and
embedded) into the d?3bb… stylesheet

Red entries: additional render blocking assets
dynamically inserted in <head>.

Note the first Blue arrow on the entry for wvq7oai.js. It’s highlighting some significant delay between the time at which we got TypeKit’s web font loader JS and the time at which TypeKit’s
request for fetching the stylesheet starts.More on that here.

https://cdn0.vox-cdn.com/javascripts/verge2_body.va053b7a4c81fd582.js
http://s.skimresources.com/js/66960X1514734.skimlinks.js
https://cdn0.vox-cdn.com/fonts/verge-font-icons/verge-font-icons.vf102409.woff

Then note the second Blue arrow on the entry for TypeKit’s stylesheet highlighting a significant delay before we start to grab the embedded fonts for displaying the text. From this view, it
seems that Chrome is getting swamped with a succession of extra render blocking requests triggered by third party scripts which may postpone our ability to decide that we really need
these fonts*. More on that here.

*: by design, web fonts are lazy loaded.

tl;dr: 4-5 seconds delay from first paint to first meaningful paint
● Unclear from Network tab what’s going on, need to take at look at Timeline (see next section)

For reference: screenshots showing how the extra render blocking assets are inserted

pubads_impl_xx.js inserted by gpt:
● non async
● in head

amzn_ads.js:
● non async
● in head

https://drafts.csswg.org/css-fonts/#font-face-loading

bid?src inserted by amzn_ads.js (call to getAds above):
● non async
● in head

trinity.js inserted by sonobi’s morpheus_... :
● non async
● in head

Overview (timeline viewpoint)
Note: this is from a different run but from the same setup. See the original slides and view in fullscreen if they are too tiny in this document.

Full page load
Note: start time set to the unload event @720ms

https://docs.google.com/presentation/d/1sDqUT6HwH21h_w8c9anmYT-YnaspXxtazVu6buoWORI/edit#slide=id.g5c2ea521d_0_457

Between first paint and first meaningful paint, a large portion of the activity is TypeKit related:

Events until first paint (green dotted line ~@+3.4s)

　⇓

Requesting TypeKit’s JS happens rather
fast. Of note, The Verge is selfhosting an
obsolete version of TypeKit’s JS (1.7;
2014-01-09).

On this particular the TTFB was particularly
excruciating. Here is a more typical
example:

● ~460ms setup + TTFB
● ~215ms downloading

After TypeKit’s JS is downloaded, we
spend:

● 217ms evaluating libraries… .js
● 155ms evaluating verge2.. .js
● 52ms evaluating TypeKit’s JS
● 35 ms running .load() which

triggers the request for the
stylesheet containing the
font-face definitions.

This explains the long delay (~460ms)
observed in the network view.

Of note, the stylesheet is hosted by TypeKit
at use.typekit.com, the same domain they
use for hosting their JS asset.

From first paint to first meaningful paint
More assets are fetched and more scripts
are run as the HTML of the main document
is being parsed.

TypeKit-wise
On this particular run, it took quite a while
(1.3s for) to get an Initial connection to
use.typekit.com. Here is a more typical
example:

● ~485ms setup + TTFB
● ~428ms downloading

Also, TypeKit V1.7 is seen aggressively
polling for the presence of .body with a
setTimeout(...,0).

TypeKit V1.7’s body polling keeps on until
the 8000ms mark where body is found
(Note: the Parse HT...268:401 blue chip just
before that. Body is at starting from line
335).

In the meantime, more assets are being
taken care of: krxd, amzn_ads, SBN inline
code, pubads_impl_xx. Krxd and
pubads_impl seems relatively expensive by
comparison and would be worth a deep
dive.

As soon as TypeKit finds out about the
presence of a body, it does something for
200ms which triggers 4 web fonts requests
(the fonts are embedded as dataURI in the
stylesheet).

There are also 3 or so additional requests
that seem to happen naturally just after
TypeKit ran.

So since we have the fonts, one would
expect to see a first meaningful paint
happen reasonably fast, right?

Unfortunately, it’s still 2+ seconds away on
this run (highlighted on the right hand side
of the screenshot).

While the network tab suggested that
render blocking assets added to the head
postponed our ability to make a decision
about web fonts, the timeline view (at least
on this particular run), says otherwise.

What actually was happening is that it’s
TypeKit which was driving the delay by
waiting on body, in order to do something
that leads to triggering the fonts requests.
However, for reasons we will discover in the
next screenshot, this doesn’t even matter.

Here is why while we have the fonts ready,
it still takes a while until something
meaningful is on the screen.

First of all, we do in fact perform some
paint work (green cells ■) in between
dealing with more async scripts, timers and
so on...

Here is a view showing what we are
painting before the first meaningful frame.

As we parse more chunks of HTML from
the main document, we paint what we can.

Here is how the document is structured:
<header>
<nav right>... //new articles drawer
<nav left>... // hot dog menu drawer
</header>
...
<article>...

We are painting:
1. the header

2. and then the (hidden) new article
drawer* which keeps on growing as we
read more HTML chunks, so we repaint it
several times.

*: the drawer triggers when touching this
area of the top bar:

3. third step, we start doing the same for
the hotdog menu drawer (also hidden and
growing as we read more chunks).

4. Finally, when we reach <article>, we start
painting something meaningful.

The additional on-going action (async
scripts to evaluate, timer firing...) probably
doesn’t help either.

tl;dr: Takeaways

the 4-5 seconds delay from first paint to first meaningful paint is due to:
1. Time to obtain chunk from main document with render blocking assets
2. Time to obtain TypeKit’s JS and other render blocking assets
3. Time to run/process TypeKit’s JS and other render blocking assets
4. Time to obtain subsequent render blocking assets (e.g. TypeKit’s stylesheet, script dynamically added to head without ASYNC...)
5. Time to process subsequent render blocking assets (e.g. parsing TypeKit’s stylesheet, evaluating and running scripts)

6. Time it takes to get the document chunks for the meaningful section of the website (i.e. <article>)

the delay from first paint to first meaningful paint is negatively influenced by:
In order of perceived importance:

1. Timers that run off and monopolize the main thread
2. TypeKit V1.7’s constant polling for .body (quite likely)
3. the time it takes to layout and paint elements that comes before the meaningful section (e.g. header, nav left and right).
4. ASYNC script
5. additional network requests (e.g. usage ping)

tl;dr: Recommendations (iteration 1)
1. Update to Just use TypeKit’s provided latest JS :)

a. Selfhosting leads to obsolete / sub-optimal versions being deployed (deploy => forget)
b. You end up paying the cost of connecting to use.typekit.com when TypeKit’s JS is fetching the stylesheet containing the font-face and

fonts.
c. When it ships: consider using the LINK HTTP header with rel=preconnect in the response to the main document to prewarm connections

to critical hosts (e.g. use.typekit.com).
2. Optimize the first head chunk* to contain as much meaningful paint blocking / render blocking resources as possible
3. Optimize the subsequent head chunks to contain the render blocking assets that piles on more render blocking assets.

a. Alternatively, use ASYNC version if available or DEMAND async support if not available.
4. Restructure the document to have the meaningful section as early as possible.

a. Alternatively/in addition, shorten/bytes-reduce the HTML for the header, left and right nav bars.

tl;dr: Insights for Blink/Chrome
1. Issue warnings in devtools for obsolete third parties (at least the popular one or problematic one)?
2. Issue warnings/tips for head optimization?
3. Pitch link preload, pre… to third parties (AI: kenjibaheux)
4. Something about layout/painting hidden elements??

For reference, first chunk on my run (not useful/reorder, useful/required, unsure/revise)

<!doctype html>
<!--
===
== lovingly brought to you by... ==================================
===
______ __ __ ______ ______ __ __ ______

https://code.google.com/p/chromium/issues/detail?id=449620

/\ ___\ /\ _\ \ /\ __ \ /\ == \ /\ \/\ \ /\ ___\
\ \ ____ \ \ __ \ \ \ \/\ \ \ \ __< \ \ _\ \ \ ___ \
\ _____\ \ _\ _\ \ _____\ \ _\ _\ \ _____\ \/_____\
\/_____/ \/_/\/_/ \/_____/ \/_/ /_/ \/_____/ \/_____/

===
_
=============================== http://www.voxmedia.com/careers ===
===
-->
_
<!--[if lte IE 8]> <html class="ie8 no-js"> <![endif]-->
<!--[if IE 9]> <html class="ie9 no-js"> <![endif]-->
<!--[if gte IE 10]> <html class="ie10 no-js"> <![endif]-->
<!--[if !IE]><!--> <html lang="en-US" class="no-js"> <!--<![endif]-->
__<head data-network="verge">
__<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="google" value="notranslate" />
<meta name="google-site-verification" content="TYyhlycNMOtUSht2aoB7heWTK8m-H45_YJizKavkO8s" />
<meta name="google-site-verification" content="IucFf_TKtbFFH8_YeFyEteQIwYPdANM1R46_U9DpAr4" />
<meta property="twitter:account_id" content="1465737598" />
<meta name="p:domain_verify" content="85c8f3a5bb43c652bbc4414488b7b973"/>
<meta name="application-name" content="The Verge" />
<meta name="msapplication-TileColor" content="#000000"/>
<meta name="msapplication-square70x70logo" content="https://cdn0.vox-cdn.com/images/verge/livetile/small.v5254d9f.png" />
<meta name="msapplication-square150x150logo" content="https://cdn0.vox-cdn.com/images/verge/livetile/medium.v146326d.png" />
<meta name="msapplication-wide310x150logo" content="https://cdn0.vox-cdn.com/images/verge/livetile/wide.v7a20b39.png" />
<meta name="msapplication-square310x310logo" content="https://cdn0.vox-cdn.com/images/verge/livetile/large.vf4ff639.png" />
<meta name="msapplication-notification" content="frequency=30; polling-uri=http://www.theverge.com/livetile/0.xml;
polling-uri2=http://www.theverge.com/livetile/1.xml; polling-uri3=http://www.theverge.com/livetile/2.xml;
polling-uri4=http://www.theverge.com/livetile/3.xml; polling-uri5=http://www.theverge.com/livetile/4.xml" />

<meta property="article:publisher" content="http://www.facebook.com/verge" />
<meta property="article:published_time" content="2015-07-26T14:00:15Z" />
<meta name="author" content="chrisziegler" />

_
_
<meta content="authenticity_token" name="csrf-param" />
<meta name="csrf-token" />
_
<meta data-chorus-version="bfd15b6e3870ad9894d2019725ae24f64379dbab" />
_
_
___<link rel="alternate" type="application/rss+xml" title="The Verge - All Posts" href="http://www.theverge.com/rss/full.xml" />

<link rel="shortcut icon" href="https://cdn0.vox-cdn.com/images/verge/favicon.vc44a54f.ico" />
<link rel="apple-touch-icon" href="https://cdn0.vox-cdn.com/images/verge/2.0/iphone-touch-icon.v3486ec7.png">
<link rel="apple-touch-icon" sizes="76x76" href="https://cdn0.vox-cdn.com/images/verge/2.0/ipad-touch-icon.v9e56a26.png">
<link rel="apple-touch-icon" sizes="120x120" href="https://cdn0.vox-cdn.com/images/verge/2.0/iphone-touch-icon@2x.vf9ccc4a.png">
<link rel="apple-touch-icon" sizes="152x152" href="https://cdn0.vox-cdn.com/images/verge/2.0/ipad-touch-icon@2x.v9d3fdb8.png">
<link rel="icon" sizes="196x196" href="https://cdn0.vox-cdn.com/images/verge/2.0/verge-icon-196x196.v503bbf1.png">
_
_
___<!--[if lte IE 8]>

<script src="https://cdn0.vox-cdn.com/javascripts/ie8_head.v15dfe7fec42f97b1.js"></script>
<![endif]-->
<!--[if lte IE 9]>

<script src="https://cdn0.vox-cdn.com/javascripts/ie9_head.v8419603a28ec4bbd.js"></script>
<![endif]-->
<script type="text/javascript">

window.Chorus = window.Chorus || {};
window.Chorus.Context = {

logged_in : false
, user_id : 0
, network_domain : "theverge.com"
, network_slug : "verge"
, community_id : 372
, entry_id : 8804686
, is_preview: false
, entry_url : "http://www.theverge.com/2015/7/26/9040645/mclaren-650s-spider-first-drive"
, emc_admin : false
, community_domain : "theverge.com"
, community_is_primary: true
, page_type : "Feature"

};
if (!window.Vox && window.Chorus) {

Vox = {
Video: Chorus.Video

}
}

</script>
_
___<script src="https://cdn0.vox-cdn.com/javascripts/libraries.vc262b07aa2474684.js"></script>
__<script src="https://cdn0.vox-cdn.com/javascripts/verge2_head.v636dc21358088775.js"></script>
_
<script type="text/javascript" src="//fonts.voxmedia.com/wvq7oai.js"></script>
<script type="text/javascript" >try{Typekit.load();}catch(e){}</script>
_

https://cdn0.vox-cdn.com/javascripts/libraries.vc262b07aa2474684.js

__<script src="https://cdn0.vox-cdn.com/javascripts/lib/advertisement.v6fdc11c.js"></script>

~ Reading an article ~
/ planning /

This section looks into responsiveness aspects (mainly, reading an article after waiting for the first meaningful paint).

Setup
Google Nexus 4 on a 3G network, Chrome 45.0.2454.6
Remote debugging from Chrome dev 45 with Devtools’ experimental filmstrip feature enabled.

Goal
optimize for Jank free, 60 FPS scrolling
URL: http://www.theverge.com/2015/7/28/9058211/amazon-new-details-plan-delivery-drone

Overview

http://www.theverge.com/2015/7/28/9058211/amazon-new-details-plan-delivery-drone

