
Timestamp interoperability using
writer-agnostic adjustments
Zoltan Ivanfi, 2017-07-18

Introduction
This is an attempt at fixing the timestamp incompatibility between Impala, Hive and SparkSQL.
There was an earlier attempt that required different adjustment logic depending the writer
component. The Spark community opposed that change, asking for a more clear approach. This
new proposal addresses these concerns by being writer-agnostic.

Background
According to the ANSI SQL standard, the plain unqualified TIMESTAMP type should have the
semantics of the TIMESTAMP WITHOUT TIMEZONE type, which in turn is described as having
timezone-agnostic behaviour: regardless of the local or session-local timezone, the timestamp
value should be displayed the same. It should essentially behave like a severely restricted string
type.

Some SQL engines of the Hadoop stack adhere to the behaviour described above, but in some
others the TIMESTAMP type has TIMESTAMP WITH TIMEZONE semantics, which essentially
means that the timestamp is stored normalized to UTC. Timestamps of this semantics may be
displayed differently in different timezones so that displayed value in the local timezone
corresponds to the same time instant as the original timestamp did.

Specifically,

●​ Impala follows timezone-agnostic behaviour,
●​ SparkSQL follows UTC-normalized behaviour,
●​ Hive follows timezone-agnostic behaviour except for Parquet tables, where it follows

UTC-normalized behaviour.

This results in incompatibility between these components. Timestamps written by one SQL
engine may result in different values when read back by other SQL engines.

https://issues.apache.org/jira/browse/SPARK-12297

Scope

Goals
●​ Interoperability of Parquet timestamps between major SQL engines of the Hadoop stack.

Timestamps written by one SQL engine should be displayed the same in other SQL
engines.

●​ ANSI-compliant timezone-agnostic behaviour of the TIMESTAMP SQL type.
●​ The properties listed above should be available for existing data as well.
●​ Temporary workaround for existing data (and also for new data until proper support is

added for new SQL types that are explicit about their behaviour).
●​ No behaviour change without explicit user request.

Explicit non-goals
●​ UTC-normalized timestamp behaviour across components (TIMESTAMP WITH

TIMEZONE type of SQL).
●​ Direct data access in Spark without using SQL.
●​ Addressing the inaccuracy of Impala's timezone database.
●​ Existing data that is already inconsistent due to being written by different components or

in different timezones.

Definition of terms

STZ
STZ stands for stored timezone. It is a table-specific setting that is specified in the
parquet.timezone-adjustment table property (exact name open for suggestions). For existing
tables, STZ must be set to match the timezone that was in effect when writing the data. For new
tables, STZ can be set arbitrarily, but the intended/recommended way of usage is to set it to
UTC.

LTZ
LTZ stands for local timezone and corresponds to the actual timezone in effect. In components
that support a session-local timezone, LTZ corresponds to the session-local timezone.

UTC
UTC is the reference timezone in terms of which all other timezones are defined. UTC does not
observe daylight saving time.

Timestamps vs. time instants
According to the SQL definition, one should not think about timestamps as actual instants in
time but as strings instead that are ambiguous without an explicit timezone. (This is only true for
the unqualified TIMESTAMP type or the TIMESTAMP WITHOUT TIME ZONE type. The
TIMESTAMP WITH TIME ZONE type does correspond to an actual instant in time.)
Let denote the time instant that interpreted in timezone corresponds to. (If 𝐼𝑛𝑠𝑡𝑎𝑛𝑡

𝑇𝑍
(𝑥) 𝑥 𝑇𝑍 𝑥

has a timezone specifier part, that has to be ignored in order to interpret the rest in timezone 𝑇𝑍
.) If is not valid in timezone (due to being skipped by a DST change), this should be 𝑥 𝑇𝑍
handled gracefully by using a valid timestamp close to the invalid range, but differs only in the
hour part, similar to how Java handles such cases.

 conversion 𝑇𝑍
1
→𝑇𝑍

2

denotes converting the timezone-agnostic timestamp from timezone 𝑦 = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡
𝑇𝑍

1
→𝑇𝑍

2

(𝑥) 𝑥 𝑇𝑍
1

to timezone . The result is another timezone-agnostic timestamp that satisfies 𝑇𝑍
2

𝑦

, i.e., the result will correspond to the same time instant when 𝐼𝑛𝑠𝑡𝑎𝑛𝑡
𝑇𝑍

2

(𝑦) = 𝐼𝑛𝑠𝑡𝑎𝑛𝑡
𝑇𝑍

1

(𝑥) 𝑦

interpreted in timezone as corresponds to when interpreted in timezone . For example, 𝑇𝑍
2

𝑥 𝑇𝑍
1

, because 𝐶𝑜𝑛𝑣𝑒𝑟𝑡
𝐴𝑚𝑒𝑟𝑖𝑐𝑎/𝐿𝑜𝑠 𝐴𝑛𝑔𝑒𝑙𝑒𝑠→𝐸𝑢𝑟𝑜𝑝𝑒/𝐵𝑒𝑟𝑙𝑖𝑛

(2017‐07‐20 10: 00)= 2017‐07‐20 19: 00

2017-07-20 10:00 in Los Angeles corresponds to the same instant in time as 2017-07-20 19:00
does in Berlin. If no such equivalent timestamp exists due to timestamps skipped by DST
changes, the original timestamp was invalid in timezone X. This should be handled gracefully by
using a valid timestamp close to the invalid range, but differs only in the hour part, similar to how
Java handles such cases.

One way to conceptualize UTC-normalized systems is by saying that in such systems parsing
timestamps automatically and implicitly involves a operation and displaying 𝐶𝑜𝑛𝑣𝑒𝑟𝑡

𝐿𝑇𝑍→𝑈𝑇𝐶

timestamps automatically and implicitly involves a operation. 𝐶𝑜𝑛𝑣𝑒𝑟𝑡
𝑈𝑇𝐶→𝐿𝑇𝑍

Exit criteria

Impala
●​ If the parquet.timezone-adjustment table property is not set, Impala behavior will not

change.
●​ If the parquet.timezone-adjustment table property is set:

○​ For Parquet files, Impala will adjust timestamp values upon reading and writing
based on the value of the table property:

■​ The value of the table property must be a valid timezone specifier,
otherwise when a query tries to access the table either for reading or
writing, Impala will indicate an error to the user.

■​ When reading timestamps, values must be adjusted according to the
following formula: , where is the on-disk 𝑦 = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡

𝑈𝑇𝐶→𝑆𝑇𝑍
(𝑥) 𝑥

timestamp to read and is the resulting in-memory timestamp. 𝑦
■​ When writing timestamps, values must be adjusted in the opposite

direction according to the following formula: , 𝑦 = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡
𝑆𝑇𝑍→𝑈𝑇𝐶

(𝑥)

where is the in-memory timestamp to be written and is the resulting 𝑥 𝑦
on-disk timestamp.

■​ Tables created using CREATE TABLE LIKE <other table> will copy the
parquet.timezone-adjustment property of the table that is copied.

■​ If the specified time zone is UTC, no noticeable performance regression
should be observable.

○​ For files in any other file formats than Parquet, Impala behavior will not change.

Hive
●​ If the parquet.timezone-adjustment table property is not set, Hive behavior will not

change.
●​ If the parquet.timezone-adjustment table property is set:

○​ For Parquet files, Hive will adjust timestamp values upon reading and writing
based on the value of the table property:

■​ The value of the table property must be a valid timezone specifier,
otherwise when a query tries to access the table either for reading or
writing, Hive will indicate an error to the user.

■​ When reading timestamps, values must be adjusted according to the
following formula: , where is the 𝑦 = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡

𝐿𝑇𝑍→𝑈𝑇𝐶
(𝐶𝑜𝑛𝑣𝑒𝑟𝑡

𝑈𝑇𝐶→𝑆𝑇𝑍
(𝑥)) 𝑥

on-disk timestamp to read and is the resulting in-memory timestamp. 𝑦
(Since in Hive displaying a timestamp automatically and implicitly involves
a operation, the displayed value 𝐶𝑜𝑛𝑣𝑒𝑟𝑡

𝑈𝑇𝐶→𝐿𝑇𝑍
𝑧 = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡

𝑈𝑇𝐶→𝐿𝑇𝑍
(𝑦)

= 𝐶𝑜𝑛𝑣𝑒𝑟𝑡
𝑈𝑇𝐶→𝐿𝑇𝑍

(𝐶𝑜𝑛𝑣𝑒𝑟𝑡
𝐿𝑇𝑍→𝑈𝑇𝐶

(𝐶𝑜𝑛𝑣𝑒𝑟𝑡
𝑈𝑇𝐶→𝑆𝑇𝑍

(𝑥)))

 will be identical to the one calculated for Impala = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡
𝑈𝑇𝐶→𝑆𝑇𝑍

(𝑥)

above.)
■​ When writing timestamps, values must be adjusted in the opposite

direction according to the following formula:
, where is the in-memory 𝑦 = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡

𝑆𝑇𝑍→𝑈𝑇𝐶
(𝐶𝑜𝑛𝑣𝑒𝑟𝑡

𝑈𝑇𝐶→𝐿𝑇𝑍
(𝑥)) 𝑥

timestamp to be written and is the resulting on-disk timestamp. 𝑦

■​ Tables created using CREATE TABLE LIKE <other table> will copy the
parquet.timezone-adjustment property of the table that is copied.

○​ For files in any other file formats than Parquet, Hive behavior will not change.

SparkSQL
●​ If the parquet.timezone-adjustment table property is not set, SparkSQL behavior will not

change.
●​ If the parquet.timezone-adjustment table property is set:

○​ For Parquet tables, SparkSQL will adjust timestamp values upon reading and
writing based on the value of the table property:

■​ The value of the table property must be a valid timezone specifier,
otherwise when a query tries to access the table either for reading or
writing, SparkSQL will indicate an error to the user.

■​ When reading timestamps, values must be adjusted according to the
following formula: , where is the 𝑦 = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡

𝐿𝑇𝑍→𝑈𝑇𝐶
(𝐶𝑜𝑛𝑣𝑒𝑟𝑡

𝑈𝑇𝐶→𝑆𝑇𝑍
(𝑥)) 𝑥

on-disk timestamp to read and is the resulting in-memory timestamp. 𝑦
(Since in Spark displaying a timestamp automatically and implicitly
involves a operation, the displayed value 𝐶𝑜𝑛𝑣𝑒𝑟𝑡

𝑈𝑇𝐶→𝐿𝑇𝑍

 𝑧 = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡
𝑈𝑇𝐶→𝐿𝑇𝑍

(𝑦)

= 𝐶𝑜𝑛𝑣𝑒𝑟𝑡
𝑈𝑇𝐶→𝐿𝑇𝑍

(𝐶𝑜𝑛𝑣𝑒𝑟𝑡
𝐿𝑇𝑍→𝑈𝑇𝐶

(𝐶𝑜𝑛𝑣𝑒𝑟𝑡
𝑈𝑇𝐶→𝑆𝑇𝑍

(𝑥)))

 will be identical to the one calculated for Impala = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡
𝑈𝑇𝐶→𝑆𝑇𝑍

(𝑥)

above.)
■​ When writing timestamps, values must be adjusted in the opposite

direction according to the following formula:
, where is the in-memory 𝑦 = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡

𝑆𝑇𝑍→𝑈𝑇𝐶
(𝐶𝑜𝑛𝑣𝑒𝑟𝑡

𝑈𝑇𝐶→𝐿𝑇𝑍
(𝑥)) 𝑥

timestamp to be written and is the resulting on-disk timestamp. 𝑦
■​ Tables created using CREATE TABLE LIKE <other table> will copy the

parquet.timezone-adjustment property of the table that is copied.
○​ For files in any other file formats than SparkSQL, Hive behavior will not change.

Extensibility
If needed, similar <file-format-name>.timezone-adjustment table properties may be added in the
future for other file formats. Please note that we can not use the same table property for all file
formats, because timestamps are already handled differently in some formats, therefore no
uniform adjustment can fix timestamps for all file formats of the same table at the same time.

Justification
The mechanism described above approximates timezone-agnostic behavior in all components.

Impala uses a timezone-agnostic in-memory timestamp representation, thereby a
UTC-normalized on-disk timestamp can easily be adjusted to its original displayed value upon
reading by doing a UTC→STZ adjustment (provided that STZ is correctly set to the timezone
that was in effect when writing the data). If the timestamps on disk are already
timezone-agnostic, then specifying UTC as STZ will preserve the timestamps without
modification upon reading. For writing new data, a reverse adjustment has to be applied.

Hive and Spark uses a UTC-normalized in-memory timestamp representation in which
LTZ→UTC conversion automatically happens upon parsing timestamps and a UTC→LTZ
conversion automatically happens upon displaying timestamps. The timestamps are saved to
and read back from disk UTC-normalized. In order to approximate timezone-agnostic behaviour,
one has to do an adjustment that results in a UTC value that will result in the desired display
value after the UTC→LTZ conversion that happens automatically upon displaying timestamps.

For example: The timestamp 2:00 (date and sub-hour parts omitted for brevity) was saved in the
"America/Los Angeles" timezone as 10:00 UTC. When loading this timestamp later or on a
different system, the local timezone is "Europe/Berlin". The timezone offsets corresponding to
the timestamp are UTC-08:00 and UTC+01:00 for STZ and LTZ respectively. One can simulate
timezone-agnostic behaviour on top of this data as follows:

●​ Calculate that 10:00 UTC is 2:00 in "America/Los Angeles".
●​ Reinterpret this 2:00 as being in "Europe/Berlin" without actually modifying it.
●​ Calculate that 2:00 in "Europe/Berlin" is 1:00 UTC.
●​ This value (1:00 UTC) should be used as the UTC-based in-memory representation.

Why is this good?

●​ Since "America/Los Angeles" is the stored time zone, we know that the user actually
wanted to save the 2:00 displayed representation, but it was saved as 10:00 UTC
instead. The first conversion gives us the proper display time.

●​ This is not enough, since the in-memory representation is still UTC and is adjusted to
local time for displaying, which would result in 3:00 being displayed instead of 2:00.

●​ So this 2:00 should be interpreted as a local time and converted to 1:00 UTC for
in-memory representation. When this gets displayed, it is shown as 2:00 as desired.
(The reason why this method is only an approximation is that timestamps skipped due to
DST changes can not be represented this way.)

Please note that if STZ==LTZ then this is a no-op, because the two conversions are opposites
of each other. This case should be explicitly handled in a more efficient way (by skipping the
conversions).

Upon writing, the reverse calculation should happen.

	Timestamp interoperability using writer-agnostic adjustments
	Introduction
	Background
	Scope
	Goals
	Explicit non-goals

	Definition of terms
	STZ
	LTZ
	UTC
	Timestamps vs. time instants
	𝑇𝑍1→𝑇𝑍2 conversion

	Exit criteria
	Impala
	Hive
	SparkSQL

	Extensibility
	Justification

