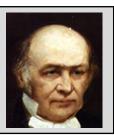
Chapitre XVI: Produit scalaire dans l'espace

Histoire des maths : Si les vecteurs peuvent être additionnés entre eux ou multipliés par un réel, il n'a pas encore été défini ce que pouvait être le produit de deux vecteurs. Celui-ci n'est pas un vecteur mais un nombre. De par la nature de son résultat, on le nomme produit scalaire. Le produit scalaire est à l'origine une notion physique : le produit linéaire. Cet outil fut élaboré par le physicien prussien Hermann Grassman (1809-1877) et le physicien américain Josiah Gibbs (1839-1903). Mais c'est le mathématicien irlandais William Hamilton (1805-1865) qui en donna une première définition mathématique en 1853.



I. Produit scalaire dans l'espace

Définition du produit scalaire

On considère deux vecteurs de l'espace \vec{u} et \vec{v} et trois points A, B et C tels que $\vec{AB} = \vec{u}$ et $\vec{AC} = \vec{v}$. Il existe au moins un plan **P** contenant les points A, B et C.

On appelle produit scalaire de \vec{u} et \vec{v} le produit scalaire \vec{AB} . \vec{AC} calculé dans ce plan. On le note \vec{u} . \vec{v}

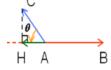
Rappels

- 1. u. v = 0 si l'un des vecteurs est nul.
- 2. $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times cos(\vec{u}, \vec{v})$ dans le cas contraire
- 3. Soient \overrightarrow{AB} et \overrightarrow{CD} deux vecteurs colinéaires non nuls.

S'ils ont le même sens : \overrightarrow{AB} . $\overrightarrow{CD} = AB \times CD$ S'ils sont de sens contraires : \overrightarrow{AB} . $\overrightarrow{CD} = -AB \times CD$

4. Soient trois points A, B, C avec A et B distincts. Soit H le projeté orthogonal de C sur (AB) alors :

$$\vec{AB} \cdot \vec{AC} = \vec{AB} \cdot \vec{AH} = AB \times AH$$
si même sens ou $\vec{AB} \cdot \vec{AC} = \vec{AB} \cdot \vec{AH} = -AB \times AH$ si sens contraire



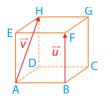
5.
$$\vec{u} \cdot \vec{v} = \frac{1}{2} (||\vec{u} + \vec{v}||^2 - ||\vec{u}||^2 - ||\vec{v}||^2)$$

5.
$$\vec{u} \cdot \vec{v} = \frac{1}{2} (||\vec{u} + \vec{v}||^2 - ||\vec{u}||^2 - ||\vec{v}||^2)$$
 $\vec{u} \cdot \vec{v} = \frac{1}{2} (||\vec{u}||^2 + ||\vec{v}||^2 - ||\vec{u} - \vec{v}||^2)$

Exemple:

ABCDEFGH est un cube d'arête a.

Notons
$$\vec{u} = \overrightarrow{BF}$$
 et $\vec{v} = \overrightarrow{AH} = \overrightarrow{BG}$.
 $\vec{u} \cdot \vec{v} = \overrightarrow{BF} \cdot \overrightarrow{AH} = \overrightarrow{BF} \cdot \overrightarrow{BG} = \overrightarrow{BF} \times \overrightarrow{BG} \times \cos \widehat{FBG}$.
Donc $\vec{u} \cdot \vec{v} = a \times a \sqrt{2} \times \frac{\sqrt{2}}{2} = a^2$.



Propriétés

Soient u, v et wtrois vecteurs de l'espace et k un réel, alors :

- $\vec{u} \cdot \vec{v} = \vec{v}$. \vec{u} commutativité
- $u \cdot v = v$. u commutativite $\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$ $(\overrightarrow{u} + \overrightarrow{v}) \cdot \overrightarrow{w} = \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{v} \cdot \overrightarrow{w}$ distributivité $(\lambda \overrightarrow{u}) \cdot \overrightarrow{v} = \lambda (\overrightarrow{u} \cdot \overrightarrow{v})$ $\overrightarrow{u} \cdot (\lambda \overrightarrow{v}) = \lambda (\overrightarrow{u} \cdot \overrightarrow{v})$

Exemple:

ABCDEFGH est un cube d'arête a.

- Comme dans le plan (AGC), C est le projeté orthogonal de G sur (AC) :
 - $\overrightarrow{AG} \cdot \overrightarrow{AC} = \overrightarrow{AC} \cdot \overrightarrow{AC} = AC^2 = 2a^2$.
- Pour calculer $\overrightarrow{BF} \cdot \overrightarrow{AG}$, on peut remplacer le vecteur \overrightarrow{AG} par la somme $\overrightarrow{AB} + \overrightarrow{BG}$:

Définition: Vecteurs orthogonaux

Deux vecteurs non nuls sont orthogonaux s'ils dirigent des droites orthogonales. Le vecteur nul est orthogonal à tous les vecteurs de l'espace.

Propriété : orthogonalité vecteurs

Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux si et seulement si \overrightarrow{u} . $\overrightarrow{v} = 0$

<u>Dém</u>:

- Si $\overrightarrow{u} = 0$ ou $\overrightarrow{v} = 0$ alors $\overrightarrow{u} \cdot \overrightarrow{v} = 0$ par définition
- Si \vec{u} et \vec{v} ne sont pas nuls, considérons les points A, B et C tels que $\vec{AB} = \vec{u}$ et $\vec{AC} = \vec{v}$

Les vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux ssi les droites (AB) et (AC) sont orthogonales ce qui équivaut à $\widehat{BAC} = \frac{\pi}{2}$ donc $\widehat{cos\,BAC} = 0$ donc $\overrightarrow{u}.\overrightarrow{v} = 0$

Expression analytique du produit scalaire

L'espace est muni d'un repère orthonormé (0, I, J, K).

Soient deux vecteurs $\overrightarrow{u}(x; y; z)$ et $\overrightarrow{v}(x'; y'; z')$ alors $\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy' + zz'$

En particulier : $\vec{u} \cdot \vec{u} = x^2 + y^2 + z^2$ et $||\vec{u}|| = \sqrt{x^2 + y^2 + z^2}$

Dém:

- Soit $\vec{i} = \vec{OI}$; $\vec{j} = \vec{OJ}$ et $\vec{k} = \vec{OK}$ On a \vec{i} . $\vec{i} = |\vec{i}|^2 = 1$, de même pour \vec{j} . $\vec{j} = 1$ et \vec{k} . $\vec{k} = 1$
- Les vecteurs \vec{i} , \vec{j} , \vec{k} sont deux à deux orthogonaux donc \vec{i} . $\vec{j} = i$. $\vec{k} = \vec{j}$. $\vec{k} = 0$
- On sait que $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$ et $\vec{v} = x'\vec{i} + y'\vec{j} + z'\vec{k}$ donc $\vec{u}.\vec{v} = (x\vec{i} + y\vec{j} + z\vec{k}).(x'\vec{i} + y'\vec{j} + z'\vec{k}) = xx'\vec{i}.\vec{i} + yy'\vec{j}.\vec{j} + zz'\vec{k}.\vec{k} + (xy' + x'y)\vec{i}.\vec{j} + (xz' + x'z)\vec{i}.\vec{k} + (yz')\vec{i}.\vec{k} + (yz')\vec{k}.\vec{k} +$

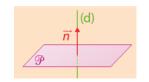
II. <u>Vecteur normal</u>

a) Vecteur normal à un plan :

Toutes les droites orthogonales à un même plan sont parallèles entre elles, leurs vecteurs directeurs sont colinéaires.

Définition: Vecteur normal

Un vecteur n non nul est dit orthogonal à un plan si ce vecteur directeur est un vecteur directeur d'une droite orthogonale à ce plan.



Ce vecteur est appelé vecteur normal au plan

Théorème : droite orthogonale à un plan

Une droite (d) est orthogonale à toute droite d'un plan \mathbf{P} si et seulement si elle est orthogonale à deux droites sécantes (d_1) et (d_2) de ce plan.

ROC 7 : Démonstration exigible

Sens direct : Si (d) est orthogonale à toute droite du plan \mathbf{P} , elle est en particulier orthogonale à deux droites sécantes (d_1) et (d_2) .

Réciproque : Si \vec{u} , $\vec{v_1}$ et $\vec{v_2}$ sont des vecteurs directeurs des droites (d), (d_1) et (d_2) .

$$\vec{u} \cdot \vec{v_1} = 0$$
 et $\vec{u} \cdot \vec{v_2} = 0$ car (d) est orthogonale à (d_1) et (d_2) .

Soit Δ une droite du plan $\boldsymbol{\rho}$ et \overrightarrow{w} un vecteur directeur de Δ .

Les droites (d_1) et (d_2) sont sécantes donc les vecteurs $\overset{\rightarrow}{v_1}$ et $\overset{\rightarrow}{v_2}$ ne sont pas colinéaires et constituent une

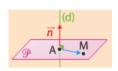
base du plan \mathbf{P} , il existe donc deux réels x, y tels que $\overrightarrow{w} = x\overrightarrow{v_1} + y\overrightarrow{v_2}$

On a alors :
$$\vec{u} \cdot \vec{w} = \vec{u} \cdot (\vec{x}\vec{v_1} + \vec{y}\vec{v_2}) = \vec{x}\vec{u} \cdot \vec{v_1} + \vec{y}\vec{u} \cdot \vec{v_2} = 0$$

On en déduit que les vecteurs \vec{u} et \vec{w} s sont orthogonaux et donc la droite (d) est orthogonale à la droite Δ .

b) Equation cartésienne d'un plan

Propriété du vecteur normal



Soit \vec{n} un vecteur non nul et A un point de l'espace.

L'unique plan ${\bf P}$ passant par A et de vecteur normal $\stackrel{\rightarrow}{n}$ est l'ensemble des points M tels que :

$$\overrightarrow{AM}.\overrightarrow{n}=0$$

Autrement dit, si M est un point du plan \mathbf{P} alors \overrightarrow{AM} . $\overrightarrow{n}=0$ et si \overrightarrow{AM} . $\overrightarrow{n}=0$ alors M est un point du plan \mathbf{P} passant par A et de vecteur normal \overrightarrow{n} .

Dém:

• Sens direct: Soit M un point du plan \mathcal{P} passant par A et (d) une droite de vecteur directeur \overrightarrow{n} . La droite (AM) est alors une droite du plan \mathcal{P} .

Comme (d) est orthogonale à toutes les droites du plan \mathbf{P} , elle est orthogonale à (AM).

On en déduit que \overrightarrow{AM} . $\overrightarrow{n} = 0$

• Réciproque : Soit M un point de l'espace tel que \overrightarrow{AM} . $\overrightarrow{n}=0$

Alors soit M est confondu avec A, ou (AM) est orthogonale à la droite (d) passant par A et de vecteur directeur \vec{n} , c'est-à-dire que M appartient au plan contenant A et orthogonal à (d).

Propriété et définition : Équation cartésienne d'un plan

Dans un repère orthonormé, un plan \mathbf{P} de vecteur normal $\vec{n}(a;b;c)$ a une équation de la forme :

$$ax + by + cz + d = 0$$

Cette équation est appelée équation cartésienne du plan P.

Réciproquement, si a, b, cne sont pas tous les trois nuls, l'ensemble E des points M(x; y; z) tels que ax + by + cz + d = 0 est un plan de vecteur normal n(a; b; c)

ROC 8 : Démonstration exigible

Sens direct: Soit $A(x_A; y_A; z_A)$ un point du plan \mathbf{P} et M(x; y; z) un point de l'espace.

Alors
$$\vec{AM}(x - x_A; y - y_A; z - z_A)$$
 et $\vec{AM} \cdot \vec{n} = a(x - x_A) + b(y - y_A) + c(z - z_A)$.

M appartient au plan \mathbf{P} équivaut à \overrightarrow{AM} . $\overrightarrow{n}=0$ ssi $a(x-x_A)+b(y-y_A)+c(z-z_A)=0$

ssi
$$ax + by + cz - ax_A - by_A - cz_A = 0$$
. En posant $d = -ax_A - by_A - cz_A$, on obtient $ax + by + cz + d = 0$

Réciproque : On pose E l'ensemble des points tels que ax + by + cz + d = 0.

On sait que a, b, cne sont pas tous nuls.

On suppose que $a \neq 0$, alors le point $A\left(-\frac{d}{a}; 0; 0\right)$ appartient à l'ensemble E.

L'équation ax + by + cz + d = 0équivaut à $a(x + \frac{d}{a}) + by + cz = 0$ c'est-à-dire que \overrightarrow{AM} . $\overrightarrow{n} = 0$ où $\overrightarrow{n}(a;b;c)$

Donc E est le plan passant par A et de vecteur normal $\vec{n}(a; b; c)$

III. Intersection de droites et de plans

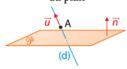
Intersection d'une droite et d'un plan

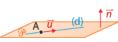
Soit (d) une droite passant par un point A et de vecteur directeur \vec{u} et \mathbf{P} un plan de vecteur normal \vec{n} .

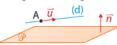
- Si \overrightarrow{u} et \overrightarrow{n} ne sont pas orthogonaux, la droite (d) et le plan \boldsymbol{P} sont sécants.
- Si \overrightarrow{u} et \overrightarrow{n} sont orthogonaux :
 - \circ Si A appartient à \boldsymbol{P} alors la droite (d) est incluse dans le plan \boldsymbol{P}
 - \circ Si A n'appartient pas à \boldsymbol{P} , la droite (d) est strictement parallèle à \boldsymbol{P}

La droite est sécante au plan

La droite est incluse dans le plan La droite est strictement parallèle au plan





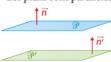


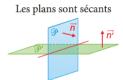
Intersection de deux plans

Soient deux plans \mathbf{P} et $\mathbf{P'}$ de vecteurs normaux respectifs \vec{n} et $\vec{n'}$.

- Si \vec{n} et $\vec{n'}$ sont colinéaires alors ${\bf P}$ et ${\bf P'}$ sont parallèles.
- Si \vec{n} et $\vec{n'}$ ne sont pas colinéaires alors \mathbf{P} et $\mathbf{P'}$ sont sécants et leur intersection est une droite.

Les plans sont parallèles





Propriété

Niveau TS

On se place dans un repère orthonormé.

- Les plans \mathbf{P} et $\mathbf{P'}$ d'équations respectives ax + by + cz + d = 0 et a'x + b'y + c'z + d' = 0sont sécants ssi (a; b; c) et (a'; b'; c') ne sont pas proportionnels.
- Lorsque (a; b; c) et points de l'espace

 $\begin{cases} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0 \end{cases}$

(a'; b'; c') ne sont pas proportionnels, l'ensemble des dont les coordonnées vérifient est une droite.

<u>Dém</u>:

• Les vecteurs $\overrightarrow{n}(a; b; c)$ et $\overrightarrow{n'}(a'; b'; c')$ sont des vecteurs normaux des plans $\boldsymbol{\rho}$ et $\boldsymbol{\rho'}$.

Ces plans sont parallèles ssi \vec{n} et $\vec{n'}$ sont colinéaires ce qui équivaut à (a;b;c) et (a';b';c') sont proportionnels.

Il s'agit de la droite d'intersection des plans P et P'.

Définition : plans perpendiculaires	Propriété
Deux plans sont dits perpendiculaires si l'un des deux plans contient une droite perpendiculaire à l'autre plan.	Deux plans \mathbf{P} et $\mathbf{P'}$ de vecteurs normaux \overrightarrow{n} et $\overrightarrow{n'}$ sont perpendiculaires ssi les vecteurs \overrightarrow{n} et $\overrightarrow{n'}$ sont orthogonaux.