
(a) Consider these three transactions:

●​ T1 : R1(A), R1(B), W1(A), W1(B), Co1

●​ T2 : R2(B), W2(B), R2(C), W2(C), Co2

●​ T3 : R3(C), W3(C), R3(A), W3(A), Co3

i. Schedule 1:

R2(B), W2(B), R3(C), W3(C), R3(A), W3(A), Co3, R2(

\\\C), W2(C), Co2, R1(A), R1(B), W1(A), W1(B), Co1

Is this schedule conflict-serializable? If yes, indicate a serialization order.

Solution: yes: 3,2,1. No cycles in the graph.

​

​ 1 <--B-- 2 <--C-- 3

​ ^ |

​ +--------A---------+

ii. Schedule 2:

R2(B), W2(B), R3(C), W3(C), R1(A), R1(B), W1(A), W1(B), Co1, R2(C), W2(C), Co2, R3(A),

W3(A), Co3

Is this schedule conflict-serializable? If yes, indicate a serialization order.

Solution: no, Graph has cycles

1 <--B-- 2 <--C-- 3

| ^

+--------A---------+

(b) Consider the following three transactions:

●​ T1 : R1(A), W1(B), Co1

●​ T2 : R2(B), W2(C), Co2

●​ T3 : R3(C), W3(D), Co3

Give an example of a conflict-serializable schedule that has the following properties: transaction

T1 commits before transaction T3 starts, and the equivalent serial order is T3, T2, T1.

Solution:

-​ R1(A), R2(B), W1(B), Co1, R3(C), W2(C), Co2, W3(D), Co3

 ​
Variations include:

-​ Swap the first two reads (of A and B)

-​ Swap last two writes (of C and D, together with the commit order)

