

Lab - Sorting variants and their applications

Part A: Sorting
❏​ Bubble Sort ------- 3 Implementation did in Class-------

i.​ Using two loops
a.​ Using two nested loops
b.​ Using two nested loop with arithmetic series first small improvement.

ii.​ Using for and a while loop, with improvement of introducing a changeHappen variable.
iii.​ Using bubbling function

❏​ Selection Sort (Two implementations)
i.​ Using two nested loop
ii.​ Using one loop and rangeMinIndex function

❏​Insertion Sort​ ​ ​
Sort an array Arr[] of size S using Insertion Sort. For this you are required to implement two functions:
1.​ InsertInSortedArray(int Arr[], int i) function which inserts an element in a sorted array. It takes two parameters, an

array Arr[] and a ith index - the index of new element which you wants to insert in sorted manner. This function
compares the ith index element with all previously sorted indices' elements (with i-1th till starting index 0). If the ith
index element is smaller than i-1th index element, a Swap (arr[i], array[i-1]) should happen and it repeatedly swaps
with previous elements until the previous element is smaller or you reach at array's starting index - 0.

2.​ InsertionSort(int Arr[], int S) function sort all unsorted array’s elements using InsertInSortedArray() function. It
passes all array elements’ indices one by one till size S. After each InsertInSort() function call, the array should be
sorted in ascending order till ith index.

-​ First make InsertInSortedArray() and then from InsertionSort() function, call InsertInSortedArray() for each ith
index value one by one

Sample Input : S= 6
INDEX 0 1 2 3 4 5
VALUE 52 12 3 14 17 10

After i = 0, InsertInSortedArray(Arr, 0)
INDEX 0 1 2 3 4 5
VALUE 52 12 3 14 17 10

After i = 1, InsertInSortedArray(Arr, 1)
INDEX 0 1 2 3 4 5
VALUE 12 52 3 14 17 10

After i = 2, InsertInSortedArray(Arr, 2)
INDEX 0 1 2 3 4 5
VALUE 3 12 52 14 17 10

After i = 3, InsertInSortedArray(Arr, 3)
INDEX 0 1 2 3 4 5
VALUE 3 12 14 52 17 10

After i = 4, InsertInSortedArray(Arr, 4)
INDEX 0 1 2 3 4 5
VALUE 3 12 14 17 52 10

After i = 5, InsertInSortedArray(Arr, 5)
INDEX 0 1 2 3 4 5
VALUE 3 10 12 14 17 52

Sample Output: Final
INDEX 0 1 2 3 4 5

Sorted VALUES 3 10 12 14 17 52

Part B: Search or sorting arrays
1.​ Given a sorted array (can you modify the linear search such that it should not search beyond the value which we are looking for.
2.​ Recall the concept of binary search we did in homework 1 i.e.Finding out the heaviest ball using a balance. Now try to implement

what you have learned in this homework.

3.​ Using Binary search, compute the square-root, a given number (to the nearest 6 decimal places).
4.​ Using Binary search, compute the third-root, a given number (to the nearest 6 decimal places).
5.​ Using Binary search, compute the k’th-root, a given number (to the nearest 6 decimal places).

Part C: Sorting with evens and odds ascending and descending
1.​ Write a program that keeps on taking input from the user until the user enters -1 (at maximum 100 values) and then sort

the even index values, in increasing order and odd index values, in decreasing order​​

Sample Input
INDEX 0 1 2 3 4 5 6 7
VALUE 100 10 2 3 27 9 19 13

Sample Output
INDEX 0 1 2 3 4 5 6 7
VALUE 2 13 19 10 27 9 100 3

2.​ Given an array of integers, print and sort the array in such a way that the first element is first maximum and second element is first
minimum and so on.

Sample Input: Size: 8
INDEX 0 1 2 3 4 5 6 7
VALUE 17 14 13 12 11 15 16 18

Sample Output
INDEX 0 1 2 3 4 5 6 7

VALUE 18 11 17 12 16 13 15 14

3.​ Given an array of integers, sort the array in such a way that the even values are in ascending order and odd values are in descending
order. Note: Even values will be compared with only even values and odds with odds.

Sample Input: Size: 8
INDEX 0 1 2 3 4 5 6 7
VALUE 17 11 18 13 16 15 14 4

Sample Output
INDEX 0 1 2 3 4 5 6 7
VALUE 17 15 4 13 14 11 16 18

Part D: Electronic Voting

​
Election happened in a country with 8 parties fighting inside the election.
Make a program to check who won the general election. Read the data
from Votes.txt file.

NOTE: Votes must be read from the file. The PVotes(Party votes count)
Array can be handled using two different arrays one for IDs and one for
Frequencies(vote count casted to each Party) both should be handled
with maximum capacity and size variables. You may assume that the
number of votes in a constituency couldn't exceed 1000.​
​

Expected out ⇒​ ⇒ ⇒​ ⇒ ​ ⇒ ⇒
​
Votes.txt​
__​
8​
PPP PML PTI ANP JIP JUI MQM PAT​
40​
4 1 2 7 3 2 1 7 5 6 6 6 2 1 1 6 7 5 6 3 6 6 1 1 5 8 4 7 1 5 5 1 1 1 7 1 6 6 1 8
__

O===O
\O/

|

/\​
Happy Coding... :)

 Good luck

	
	Lab - Sorting variants and their applications
	
	Part A: Sorting
	❏​Bubble Sort ------- 3 Implementation did in Class-------
	i.​Using two loops
	a.​Using two nested loops
	b.​Using two nested loop with arithmetic series first small improvement.
	ii.​Using for and a while loop, with improvement of introducing a changeHappen variable.
	iii.​Using bubbling function
	❏​Selection Sort (Two implementations)
	i.​Using two nested loop
	ii.​Using one loop and rangeMinIndex function
	❏​Insertion Sort​​​
	Part B: Search or sorting arrays
	Part C: Sorting with evens and odds ascending and descending

	​Election happened in a country with 8 parties fighting inside the election. Make a program to check who won the general election. Read the data from Votes.txt file.
	
	NOTE: Votes must be read from the file. The PVotes(Party votes count) Array can be handled using two different arrays one for IDs and one for Frequencies(vote count casted to each Party) both should be handled with maximum capacity and size variables. You may assume that the number of votes in a constituency couldn't exceed 1000.​​Expected out ⇒​⇒ ⇒​ ⇒ ​ ⇒ ⇒
	​Votes.txt​__​8​PPP PML PTI ANP JIP JUI MQM PAT​40​4 1 2 7 3 2 1 7 5 6 6 6 2 1 1 6 7 5 6 3 6 6 1 1 5 8 4 7 1 5 5 1 1 1 7 1 6 6 1 8

