
Utility AI Combat System Plugin

By Zachary Kolansky

Features

1.​ Weapon System, Replicated
2.​ Firing Component, Replicated
3.​ Montage Component, Replicated
4.​ Utility AI System
5.​ Mannequin with Range and Melee animations with an Anim BP. (Retargeted Paragon Greystone, and Paragon Lt.

Belecia animations to the Mannequin)
6.​ Interfaces and Anim notify states for Combat.
7.​ Stat System, Replicated. Also has a status effect system.
8.​ Rudimentary Saving and Loading support for Weapons,Stats, and Status Effects.
9.​ Hit React System.

Purpose

​ The objective of this project was to provide a simple UtilityAI framework, because behavior trees scale poorly as AI
behaviors become increasingly complex. Even though behavior trees support pallarism, it is limited because the tasks are
not fully independent. Instead of sequence and selectors, we have task layers. Instead of stacking decorators, each task
has a scoring function.
Here is the framework:

1.​ Each task has a Scoring function, flow options, Layer, Entry, and Exit and customizable in Blueprint
a.​ Task layers determine parallelism, and which tasks can interrupt each other.
b.​ Tasks on different layers operate independently, and there can be only one active task per layer.
c.​ Flow options: Cooldown, Randomized Cooldown, do once, Locked

2.​ Everytime we want to Determine the best task, we do the following
a.​ Calculate anything necessary to perform scoring functions. (Ex. Distance in unreal units to the focus)
b.​ Score every task on a scale of 0-1 based on its scoring function.
c.​ Change to the best tasks, comparing the BestTask TMap to the CurrentTasks TMap.

3.​ Changing tasks
a.​ Determine if the current task either: ended, can be interrupted, or can be forced to end. Exit that task, and

note the free layer.
b.​ Tasks that cannot be ended are still the current task for a particular layer, and stored into NewTasks Map.
c.​ For each free task layer, begin the best task and add the task layer association to the NewTasks Map.
d.​ CurrentTasks Map = NewTasks Map

Many games have two variables to manage a stat: a current value and a max value. While this is good for smaller
projects, this framework becomes unwieldy the more complicated the project becomes. Additionally, this per-variable
framework does not work with data tables, which are an invaluable tool to balance players and weapons. An abstract stat
system allows for flexible data tables, calculating any normalized value. (I.e current/Max), one stat changing the value of
another stat, and equipment. This also been handled.

Moreover, many games require a weapon system, and we all have been reinventing the wheel. While Epic has provided a
Shooter Game template, its weapon inventory system is integrated with its character, its firing system is tied to its gun,
and it is not available as a plugin. This makes it difficult to use with existing projects, and abstract it into different genres.
This plugin aims to fix that, and give everyone a place to start. Hence, the weapon system must

1.​ Be replicated
2.​ Not be tied to a specific C++ character class
3.​ Handle both melee and ranged
4.​ Can fire line traces, or projectiles.

All of this is done.

https://docs.unrealengine.com/en-US/Resources/SampleGames/ShooterGame/index.html

Installation and Plugin Versions

1.​Marketplace version
2.​Github link

a.​Meant to be a 100% reflection of the marketplace version. Go here if
there is an Engine update that you need ASAP.

3.​ALSCombine (Github link)
a.​I Combined this plugin with Community ALS so they are together.
b.​Community ALS

4.​See Github ReadMe for installation from github guide.

https://www.unrealengine.com/marketplace/en-US/product/utilityai-with-replicated-weapon-stat-and-status-effect-systems
https://github.com/ZacharyDK/UtilityCombatSample
https://github.com/ZacharyDK/ALSUtilityCombine
https://github.com/dyanikoglu/ALS-Community

Getting Started

1.​ Make Engine content visible

2.​ Open the Overview map in the Maps folder of this plugin

3.​ Open the MannequinCharacter_BP

4.​ Read Overview of the classes.

I’m gonna walk you through where to look to get a feel for my implementations. MannequinCharacter_BP is a class that

integrates the main functions of the Plugin. It is the best place to start noting my implementation, organized by

EventGraph. Read my notes below and go through each section to get a feel about how everything is tied together.

Starting at EventGraph

●​ Look at Begin Play.

●​ AssignStatInformationWidgetInterface is implemented on the StatBar widget, and handles event binding to the

StatManger, ensuring the widget is updated appropriately.

●​ Weapons are replicated actors, and spawned on the server. They are managed by WeaponManagerBP when

AddWeaponToArray()

●​ PointDamageEvent demonstrates how to use the StatManager, changing stat values and status effects.

●​ On Effect Initialize, On Effect Clear, On Effect Pause, On Effect Resume demonstrates how to integrate the

MaterialsManger with the StatManger, so that the skeletal mesh changes color with given status effects. Note that

the skeletal mesh material must have the StatusEffectVisual material function plugged into the emission material

node.

DefaultInputs (EventGraph)

●​ Identical to the BP inputs on the BP version of the ThirdPerson Template.

WeaponInputs(EventGraph)

●​ Left Mouse, Q, E, Right Mouse button. Didn’t use specific action events in the project settings, I leave this up to

you.

●​ Project settings events are the same as the ThirdPerson template. (This is different in the ALS Combine version of

the plugin.)

WeaponNotifyStateInterface (Event Graph)

●​ The interface WeaponNotifySateInterface_BP integrates the many out of the box notify states. See

Blueprints/NotifyStates and Interfaces folder for an appreciation of the depth.

●​ The Notifies themselves check to see if the owner has Authority before setting variables or capsules traces.

●​ MannequinCharacter_BP has the variables bIsAttacking and bIsBlocking. (Variable category: Melee.) These

variables are set by the notifies, from the montages. The C++ UInterface IUtilityAIManagerToPawnInterface is

implemented by MannequinCharacter_BP. IUtilityAIManagerToPawnInterface reads values from this AActor in two

general cases: when this AActor is the focus of an AI with AUtilityAIComponent, and when it is the pawn of an AI

with AUtilityAIComponent. This interface is essential for reading the state of the focus and controlled pawn.

UtilityCPCInterface (Event Graph)
●​ UtilityControlledPawnCommands_BP is a Blueprint Interface implemented here.

●​ This interface is what the TaskComponents in Blueprints/ActorComponents/TaskComponents call to direct the AI to do

specific tasks. This is what you want to extend when adding your own functionality.

●​ For example, the MeleeWeaponTask_BP tells the controlled pawn via the CPC interface to swing the weapon when the task

is started. MannequinCharacter_BP handles deciding how to actually do the task. Here, we query the

WeaponManager_BP for the active weapon, determine if it has a MeleeMontageComponent, and PlayNextMontage(). See

Weapons/Sword_BP for an example. MeleeMontageComponent_BP is a UMeleeMontageComponent that has variables and

methods for specifically controlling when a given montage can play, sequencing montages, and interrupting other montages.

Note that the component uses soft references, so you are responsible for loading the montages in. (See Soft references

section.)

WeaponDeletages (Event Graph)

●​ Handles changing the animation state of the character skeletal mesh. WeaponManager_BP automatically calls delegates

when the character changes weapon. Replicated.

Other Character Notes

1.​ UE4_Mannequin_Skeleton has been modified. Important sockets are Sword_Holster, Gun_Holster, Gun_Equip,

Sword_Equip. WeaponManager_BP reads the data table EquipData to know what montages and sockets to use for a specific

weapon type. There is no limit to the number of weapon categories, but each needs a unique FName that must match that

look up row in the EquipData UDataTable*

2.​ Weapons have their own UStatManager, and their own stat data table describing their base stats. When a base stat is

queried by the character, the character UStatManager will sum its own stats with the stats of equipped weapons.

AWeaponActor handles interacting with the UStatManager of the actor who wields it. UWeaponManager calls Equip(),

Holster(), Remove() on the AWeaponActor, to handle these operations. Comically, weapons can have their own status effects,

and those calculations will be handled.

3.​ Stat Nuances

a.​ GetStatValue() Sum of a stat using: Dictionary, Effectors (status Effects). Doesn’t include other StatManagers.

b.​ GetStatTotal() Sum of a stat using: Dictionary, Effectors, Bindings, Other Stat Managers

c.​ GetRawStat(): Only return the value of stat as defined in the StatDictionary. Doesn’t care about Bindings, Other stat

managers, and Effectors. Keeps things simple.

Intended Audience

This product is for users with Unreal experience. I make use of soft pointers and expect you to either read up on my notes, or already
understand how to use them. While I give an overview about the function of each part, important methods, important variables, and
integration, users familiar with C++ will get the most out of this plugin. I make use of both C++ and Blueprint, and nearly everything is
exposed to Blueprint.

I organized the header files to contain the variables and methods in alphabetical order, with _Server and _Multicast variants near the
corresponding method.

You don’t need to understand replication to use this system, and I actively hide the need to think about replication from you. I do this
with a very simple set up that I use throughout the plugin. Replication is often handled at the component level, and uses RPC
(Remote procedure calls)

Example:

UFUNCTION(BlueprintCallable)
Void DoSomething()

UFUNCTION(BlueprintCallable, Server, Reliable)
Void DoSomethingServer()

UFUNCTION(BlueprintCallable, NetMulticast, Reliable)
Void DoSomethingMulticast()

If the OwnerActor does not have authority, and is an autonomous proxy,

DoSomethingSever()
Else if OwnerActor HasAuthority()
​ DoSomethingMulticast()

The function DoSomethingServer() simply calls DoSomethingMulticast(). When a multicast function runs on the server, it will execute
it locally, and then tell the clients to run DoSomethingMulticast(). Essentially, the original DoSomething() function is a simple wrapper
for ensuring Multicast functions are called on server, or that a player (usually an autonomous proxy) will be able to call to a server
RPC, to call the multicast RPC, to ensure actions happen to multiple clients. AI will have to be run on the server, and then call
multicast RPCs.

Recommendations

1.​ This system is large and complicated. Read all the documentation, and go through each header file. Pay close attention to
C++ overview table; it will help orient you to the pieces. The time you save making use of an out of the box solution is offset
by the time it will take to understand everything that is going on. However, this should still result in a net amount of time
saved.

2.​ Create a folder called “Plugins'' in your project, and drag this plugin into it. I include things like a PlayerController, AIController,
WeaponManagerComponent. Each project will likely have specific needs, and you’ll want to be able to easily edit these files
to tailor this plugin to your specific needs and use it as a springboard for your work. If you don’t see the content, be sure to
toggle show engine content in the view options.

3.​ If you don’t want to drag this into the project folder, then check slow engine content in the view options. The two folders you
should see are UtilityCombatPlugin Content and UtilityCombatPlugin C++ Classes

4.​ For the C++ classes, note I often call an Initialize() function to set default values, like a WorldTimer manager, or find specific
components. Note these methods when you read the C++. If you wish to write your own subclasses, ensure Initialize() is
called as appropriate.

5.​ In Blueprint, when you drag a pin of an object that is derived from a C++ class, type one of the categories I’ve noted in the
overview table. This will give you an idea of what each part can do.

6.​ Overview map has a basic implementation of everything. WASD, mouse, Q/E change weapons.

I recommend you have this plugin in a created plugin folder, so your edits to the plugin are
specific to a particular project. Many projects have their own unique needs when it comes
to weapon systems, and this allows you to better customize the project to your needs.

(See image on next page, google doc not behaving)

Soft References

Soft References are a way to create references that don’t cause dependencies (like hard references). Additionally, a SoftReference
requires that you manually load the asset. This is nice because it gives the designer choices about when to load what, and it avoids
frame hitches.

Instead of using a hard reference for Montage objects with a UAnimMontage* pointer, I use a TSoftObjectPtr<UAnimMontage>
object. I made this choice because montages can reference a lot of different assets. (Sounds, animation notify + dependencies,
Particle effects, Skeletal Mesh with its materials and textures, and associated animation data). As the montages are variables on
components, it becomes incredibly easy to bloat your dependency graph with montages on the actor component.

For example a “GunWeapon” could have a Firing Component with a Actor class to reference its bullet, and a montage for reloading.
When said “GunWeapon” is loaded, all its hard references would have to be loaded with it. And if skeletal mesh + other
dependencies for that montage aren’t in use, you just bloated your project with one weapon. By using Soft References for the Actor
bullet and the montages, this is avoided. I take this approach here.

How to load Soft References

1.​ In Blueprint (Not my expertise, but here is a resource.) Gotta know how to use the primary asset manager
a.​ https://www.youtube.com/watch?v=K0ENnLV19Cw

2.​ It is possible to do it in C++.
a.​ Read this https://docs.unrealengine.com/en-US/Programming/Assets/ReferencingAssets/index.html
b.​ And this https://docs.unrealengine.com/en-US/Programming/Assets/AsyncLoading/index.html
c.​ You will notice an object called UGameGlobals is referenced, but it doesn’t exist in Unreal’s Source code. This class is

called a singleton. To set up a singleton, read my write up on it. (It is here, see SoftReference section:
https://docs.google.com/document/d/16Nb3Mn-8Z-CkRFEgq8F6EA_wW-dhYR5YOuj042mgsyg/edit?usp=sharing)

3.​ Drag the object that is being referred to by the Soft Reference into the scene. This force loads it, and creates a hard reference
between the level and said object. This is useful for debugging and quick and dirty testing. I take this object approach in the
overview map, and leave it to you to decide how you want to load your objects. If you were to remove the actor playing a
montage from the scene, and then try to play that montage, you will notice that the montage will fail to play. In the same vain,
if you were to remove the bullet actor from the scene, you wouldn’t be able to fire bullets.

https://www.youtube.com/watch?v=K0ENnLV19Cw
https://docs.unrealengine.com/en-US/Programming/Assets/ReferencingAssets/index.html
https://docs.unrealengine.com/en-US/Programming/Assets/AsyncLoading/index.html
https://docs.google.com/document/d/16Nb3Mn-8Z-CkRFEgq8F6EA_wW-dhYR5YOuj042mgsyg/edit?usp=sharing

4.​ Trust I know what I’m doing, use my implementation that is in another plugin. I included an Asyc asset loader (On the actor
component level.) with my Maze Dungeon Generator Plugin. I already needed to have a singleton to asynchronously load the
UWorlds, so it made sense to add the functionality there.

Overview of C++ classes.

Class Parent Blueprint(s) Description

UMaterialManagerComponent UActorComponent MaterialManager_BP Sets up Dynamic materials on a given skeletal mesh, and
manages the visual effects of status effects.

Important Method Categories: Effects

UMeleeMontageComponent UActorComponent MeleeMontageCompo
nent_BP

Uses Multicast RPC to play montages over the network.
Has several ways to determine whether a montage should
be played.

Important Method Categories: Montage

UStatManager UActorComponent StatManager_BP Uses RPC’s to keep Stat dictionaries in sync. Has methods
relating to creation of Status effects, and reading data
tables. Also can reference other Stat components to get a
total sum of a stat between them.

Important Method Categories: Stat, Status, Stat Binding,
Stat Query, Utility, Saving And Loading

UStatusEffectComponent UActorComponent None Created and destroyed at Runtime as needed. Sends a
multicast RPC via the master stat manager everytime it
wishes to apply an effect.

AUtilityAIController AAIController UtilityAIControllerMele
eFocus_BP

UtilityAIControllerRan
geFocus_BP

1. Exposes aspects of the IGenericTeamAgentInterface to
Blueprint, so you can set up teams.
2. Provides basic implementation of
GetTeamAttitudeTowards().
3. Overrides GetFocalPointOnActor(), and provides
exposed float FocusEyeHeight, so your enemies won’t
stare at the Player’s feet.

https://www.unrealengine.com/marketplace/en-US/product/maze-dungeon-generator-plugin?lang=en-US&sessionInvalidated=true

UUtilityAIManagerComponent UActorComponent UtilityTaskManagerCo
mp_BP

Manages all the UtilityTasks, implemented as
ActorComponent. Decides which is the best task, and
stores relevant variables relating to the state of the focus. It
is meant to be attached to an AAIController.

IUtilityAIManagerToPawnInter
face

UInterface None Allows the UtilityAIManagerComponent to query
information about its controlled pawn, independent of
class. It allows this component to query the normalized
value of a stat, whether the controlled Pawn is in Melee,
and how the focus is attacking. (This interface would have
to be implemented on both the enemy character, and
player character.)

UUtilityCombatTaskCompone
nt

UActorComponent UtilityTaskComponent
Base_BP

And every task in the
task component folder

Meant to be attached to an AAIController, and each
component encapsulates a specific task for the AI. The
function Initialize() on the UUtilityAIManagerComponent
finds all of these components, assigns each task
component the controller. See dedicated page for details

AUtilityPlayerController APlayerController UtilityPlayerController
_BP

Implements and exposes aspects of the
IGenericTeamAgentInterface. Also implements line trace

method for crosshairs.

AWeaponActor ASkeletalMeshActor Sword_BP
BurstFireGun_BP
FullAutoGun_BP
Shotgun_BP

A base class for a replicated weapon, meant to be
attached to a character’s skeletal mesh. Overrides
GetNetConnection() to return the net connection from
GetAttachParentActor(). This ensures actor components
attached to this actor can fire RPC’s. Has a UStatManager
created in the constructor.

Delegates:
On Weapon Equipped
On Weapon Holstered

Query Methods:
HasFiringComponent()
HasMeleeComponent()

Blueprint Native Event: (events that can be overridden in
BP)
ReloadWeapon()
FireWeapon()
FireWeaponEnd()

Functions for internal use.
SetStatusOfDictionary()
Equip()
Holster()
Remove()

UWeaponFiringComponent USceneComponent FiringComp_BP A replicated component that can fire line traces or any
actor as projectiles. Can be attached to a ACharacter or
AWeapon,with no change in functionality or behavior. It
handles all of that behind the scenes.

Also handles:
Ammunition
Single Fire vs Burst Fire
Firing Cooldown, and Automatic Firing

Manage Timers, and cleaning up timers
Reloading, playing reload montage
CanFire() method
Firing line traces and projectiles in patterns.

Important Method Categories: Firing

UWeaponManager UActorComponent WeaponManager_BP A replicated component that manages the inventory of
AWeaponActor's.Meant to attached to ACharacter with a
skeletal mesh.Responsible for:
1. Attaching and detaching weapon to the owner's skeletal
mesh at specific sockets.
2. Playing equip and holster montages, (optional to change
the equipped weapon)
3. Having an active weapon, but have said equip weapon
be either equipped or holstered.
4.Manage changes in the Owner's UStatManager and the
Weapon's UStatManager to respond to equipment
changes. Replicated.

When EquipWeapon() and HolsterWeapon() are called with
the parameter bImmediatelyChangeActorSocket = true,
then the AWeaponActor'sEquip() and Holster() will be
called respectively. This passes down Owner's
UStatManager to the weapon, such that the weapon can
add it's stat component to the owner's OtherStatManagers
Array.The AWeaponActor also changes
bStatDictionaryCanModifyOtherStatDictionary in its
UStatManager to respond to whether it is equipped or
holstered.

Important Method Categories: Weapons

Overview of Blueprint Only Objects​

Blueprint Parent Description

AnimationCommands_BP Interface This interface is meant to be implemented by an Anim Instance
(Animation Blueprint). It provides useful methods for communicating
to skeletal meshes anim instance without casting. For example,
setting death state, Equip State (From BP enum), or playing hit
montages.

While there are methods for attack and block montages, they are
NOT used here. Attacking and blocking montages are handled on the
component level. They are defined here in case you want to define
attack animations in the animation blueprint itself. For example,
enemies that have a weapon attached to the mesh that don’t need a
complicated weapon system, and can just be commanded to attack
from the animation BP level.

WeaponNotifyStateInterface_BP Interface This interface is meant to be implemented by a character blueprint. It
allows various notify states to perform their function. They
communicate to the their owner character via this interface, without
caring about the class of the character

It contains the categories:

1.​ Melee Damage Interface (For Melee combat. Getting the
sockets for capsule trace)

2.​ Weapon Firing. (When it is necessary to fire from animation
notify state)

3.​ Blocking
4.​ Melee Effects. (When we have a successful hit with a melee

weapon)
5.​ Dodge Roll (For setting the state of a bool to keep track of ​

when a dodge roll should be active or not)
6.​ Equipment (For changing the weapon socket of an equipped

AWeaponActor at a specific point on a montage)

UtilityControlledPawnCommands
_BP

Interface This interface is meant to be implemented by a character. It is used
by the blueprint tasks defined in
Blueprints/ActorComponents/TaskComponents. Implement this on
characters you want my AI system to control.

WidgetInterface_BP Interface This interface is implemented by the StatBar blueprint. In UI/Widgets.
It has one method, AssignStatInformation(). It is used to link the
widget to a UStatManager, and give the widget a color and stat name
to manage.

RangeAndMeleeAnimBlueprint Anim Instance An animation BP that uses animations from the Paragon Characters
GreyStone and Belecia. Its formatting also takes after those anim BP.
I have already set it up to change between melee and range
animations from a given EquipType.

PlayerHud HUD Quick and dirty hub that relies on casting to MannequinCharacter_BP
to get its stat component. Then it adds a PlayerHudWidget to the
viewport

PlayerHudWidget User Widget Quick and dirty HUD that displays the health stat.

MannequinCharacter_BP ACharacter Contains blueprint inputs identical to the Third Person Template
blueprint starter project. I implemented many of my interfaces already,
and set up event graphs. A picture is worth a 1000 words, and you
can see what components are already on the blueprint. It’s designed
to work out of the box, and have events be broken down into logical
categories.

UtilityCombat Task Component Notes and Scoring

Many specific tasks have already been implemented onto an AI Controller. See the Blueprint UtilityAIControllerRangeFocus_BP to
see the integrated system, how I initialized it, how I managed AI perception, and how I added all the tasks. The function
CalculateTaskScore() returns a float from 0.0f to 1.0f that determines how optimal the task is at a given time. (1.0f = Best, 0.0f is
worst). This function is a BlueprintNativeEvent, so you can account for whatever blueprint related variables. (Do call the parent C++
function though.) Importantly, CalculateTaskScore() first calls IsTaskReady(), to determine if we can even attempt the task. If it fails
this check, CalculateTaskScore() returns 0.0f.

In order to explain how each task component is scored, I first need to explain the FUtilityCurveCollection data structure. This data
structure contains an ECurveInputQuery CurveInputQuery, a StatName (FName), a CurveFloat (the actual curve), CurveDampen
(float), CurveOutput (float), and bMultiplyThisCurveOutputToRunningTotal.

1.​ The CurveFloat is a variable of type UCurveFloat* . It expects to reference a curve that can take some normalized input (from
zero to one), and output a normalized value. I don’t strictly enforce this, and expect you to be cognizant of how you set up
your tasks.

2.​ The enum CurveInputQuery defines what values will be input into the given CurveFloat. There are various comparisons that
query variables in the UtilityAIManagerComponent. These are explained in UtilityCombatDataStructures.h and defined in the
function UUtilityAIManagerComponent::GetNormalizedStat(const ECurveInputQuery) const. Many of these functions return
0.0f if a specific condition is false, and 1.0f if a condition is true. For example, passing in ECurveInputQuery::HasFocus will
return 1.0f if there is a focus, 0.0f if there is not a focus. In this way, I can map relevant conditions to a float and design curves
accordingly.

3.​ StatName is an FName, and will only matter if CurveInputQuery = ECurveInputQuery::STAT_BY_FNAME. Even though
ECurveInputQuery covers many relevant conditions, it isn’t comprehensive and some sort of general system is necessary. If
you decide to designate input by StatName, the function
UUtilityAIManagerComponent::GetNormalizedStat(const FName& InputStat) const will be called. This function queries the
controlled pawn, to determine if it implements the UUtilityAIManagerToPawnInterface; If it doesn’t, then the curve input will be
0.0f. If it does, then interface function GetNormalizedStat() will be executed on the AI’s controlled pawn. This interface
function is exposed to blueprint, and is already implemented for you in MannequinCharacter_BP. (Category: Controlled Pawn
UMPI). Hence, any FName can be used to query any specific value on the controlled pawn. Just remember to normalize the
value by dividing the current value over the max value.

4.​ Once we have a suitable normalized input, we evaluate it at the curve. [Calling CurveFloat->GetFloatValue(NormalizeInput).]
This value is the NormalizedCurveOutput. Then we set CurveOutput = NormalizedCurveOutput*CurveDampen. This allows
you to debug your AI by viewing the output of each curve.

5.​ Note that the CurveDampen is a scaling factor for a curve. It’s default value is 1.0f.

Finally, the total score of a task is calculated as a running total. Starting at 1.0f, we evaluate the first curve. If FUtilityCurveCollection
has bMultiplyThisCurveOutputToRunningTotal set to true, then the running total will be multiplied by
NormalizedCurveOutput*CurveDampen. If bMultiplyThisCurveOutputToRunningTotal is set to false, then
NormalizedCurveOutput*CurveDampen will be added to RunningNormalizedUtilityValue.

NOTES:

●​ Having a series of curves multiplied together serves as AND operator between them.
●​ Having a series of curves added together is similar to the OR operator, except the OR can be weighted based on many

different conditions. Ensure you scale CurveDampen appropriately, or tasks will be given a UtilityScore greater than 1.0f. This
means the task will be picked over tasks that cannot become greater than 1.0f.

●​ Curves are evaluated in the order as defined in the component variable. TArray<FUtilityCurveCollection>CurveCollection.
●​ EnterTask() and ExitTask() are BlueprintNativeEvents. Ensure you call their parent functions, and override these to have your

AI perform the tasks themselves.

Major variables

Type Name Description

bool bIsTaskActive True if the task is occurring, false if the task is done.
Controlled internally by EnterTask() and ExitTask()

TArray<FUtilityCurveCollection> CurveCollection The list of curves you want to evaluate. Contains
information about how you want to query them.

bool bOnlyDoTaskOnce,
bPerformedTask, bTaskLocked

Several variables under the flow category. They
influence whether a task is ready. If bTaskLocked is
true, then IsTaskReady() will return false.

float CurrentCooldown, MinCooldown,
MaxCooldown

Category: Cooldown. We keep track of the time when
tasks fire, and we can force tasks to wait for a period of
time before firing again. If true,
bSetCurrentCooldownBetweenMinMax will randomize
the cooldown when a task is Entered.

int32 TaskLayer Tasks on different layers can operate concurrently. Each
layer can only have one active task at a time

FName TaskName VERY IMPORTANT. I use the TaskName to compare
task components. (I.e Determine whether a
CurrentTask is different from the BestTask.) This
information is also broadcasted to the delegates
OnAnyTaskEnter and OnAnyTaskExit

EUtilityInterruptionType InterruptionType Determines if another task can stop this task if its
UtilityScore becomes higher than this task.

EUtilityInterruptionType::ALWAYS
EUtilityInterruptionType::NEVER
EUtilityInterruptionType::PRIORITY

EUtilityInterruptionType::PRIORITY
Means another task can only interrupt this task if its
InterruptionPriorityNumber is strictly greater than this
task’s InterruptionPriorityNumber

Known Issues
Crash upon using StatManager_BP.
Cause: StatusEffect data table in stat data table variable. (I swore I fixed this earlier.)
Fix: Clear the variables and assign the correct data tables.
This should be fixed in 4.27

Changelog

4.27 Minimal API changes to StatManager.h

So I now get a build Error for trying to use a TMap<> in an RPC. So I modified the Server and Multicast RPC’s for SetStatBindings,
and SetStatDictionary. The blackbox function takes a dictionary, then breaks it into two TArrays, and then passes them into the
correct RPC. The multicast version rebuilds the dictionary based on the given TArrays.

Note: I didn’t flag the pass by reference with UPARAM(ref) macro, but those RPC’s aren’t exposed to BP. Let me know if you want
me to expose them to BP.

5.0-5.1 fixed bug related to reloading on the Scene component. Github version has the fix. I was going to push this fix out to all
versions but now I have a build problems on xcode 14.

Status of 5.1

5.1 is delayed until I either can get my windows computer up in running, or Epic fixes Mac building in Unreal with Xcode 14.
I do my development on a Mac. This normally isn’t an issue. It became an issue. Here are the details.

Unreal Engine 5.1 requires Xcode 14. I was on Xcode 12. To get Xcode 14, you have to upgrade your OS. I did that.
With 5.1 I try to build the plugin, I get the error “Platform Mac is no a valid platform to build”.

I do a bit of research, find that this error has already been reported and Epic published a quick fix. QFE patch. I download the patch. I
cannot install the patch because I get the error that the QFE is damaged. I redownload it. Same error.

I’m tired.

	Utility AI Combat System Plugin
	Features
	
	
	Purpose
	
	
	Installation and Plugin Versions
	Getting Started
	
	Intended Audience
	Recommendations
	I recommend you have this plugin in a created plugin folder, so your edits to the plugin are specific to a particular project. Many projects have their own unique needs when it comes to weapon systems, and this allows you to better customize the project to your needs.
	(See image on next page, google doc not behaving)
	
	
	
	Soft References
	Overview of C++ classes.
	Overview of Blueprint Only Objects​
	UtilityCombat Task Component Notes and Scoring

	Known Issues
	Changelog
	Status of 5.1

