
Rendering with Neural Intersection Functions

Personal Information
Name: Jin Ke

University: Tongji University

Email: rainy.autumn.fall@gmail.com

Time zone: GMT+8

Project Information
Project Title
Rendering with Neural Intersection Functions

Brief Summary of Project
Ray tracing involves computationally expensive calculations and geometry with
varying degrees of complexity. According to Fujieda et. al[1], a novel Neural
Intersection Function can be used for ray intersection queries. This method has
better efficiency while ensuring image quality. The objective of this project is to
implement and rigorously evaluate this Neural Intersection Function against the
industry-standard bounding volume hierarchy (BVH) algorithm, providing a
comprehensive comparative analysis of their respective performance characteristics.

Previous work
The Brl-cad Team have tried a project BRL-CAD Neural Rendering which aimed to
encode BRL-CAD geometry into a machine learning model to develop
three-dimensional renderings.

In the DATA COLLECTION METHODS section, they attempted three methods: the mixed
bounding box approach, the pure bounding box approach, and the grid approach.

https://github.com/rsr180004/brlcad

In the encoder section, they primarily explored the TRADITIONAL ENCODING APPROACH,
which can be further divided into SINGLE MODEL ARCHITECTURE and DUAL MODEL
ARCHITECTURE. The former employs a single network architecture for training, while
the latter utilizes two networks: one for determining if the ray hits the wire and the
other for determining the distance between the hit rays and hit points.

Subsequently, they also attempted the GRID ENCODING APPROACH, a method proposed
by Fujieda et al[1].

They utilized the PyTorch C++ API to accomplish this project and rewrote the
art::raytrace method, in work.c:

if(neural_rendering != 1) {

 (void)rt_shootray(&a); // This is the call to rt_shootray we need to
edit

 }

 else { // Doing neural rendering

 ...

 }

Users can train the model beforehand by using bin/rt_trainneural *.g
Body1.2.4.b.c.s and then define neural_rendering to determine whether to use the
trained neural network for rendering.

Howerver, there are still several shortcomings in this work:

●​ The current data collection methods exhibit significant randomness. In the
conclusion section of their report, it is mentioned that, "Variations in the
collection of training data, as well as potential tweaks to the model, may lead
to significant improvements in the performance of the system."

●​ They did not fully reproduce the method mentioned in the NIF paper; they only
implemented part of the NIF outer network and did not implement the NIF
inner network.

●​ The neural grid structure they used is too simple：

self.model = nn.Sequential(

 nn.Linear(5, 120),

 nn.ReLU(),

 nn.Linear(120, 80),

 nn.ReLU(),

 nn.Linear(80, 64),

 nn.ReLU(),

 nn.Linear(64, 32),

 nn.ReLU(),

 nn.Linear(32, 1),

 nn.Sigmoid()

)

●​ During the rendering process, the camera is static, and dynamic camera
rendering has not been implemented.

Detailed project description
This project aims to utilize NIF to accelerate the ray tracing process and explore
whether this algorithm can be extended to arbitrary camera viewpoints. I am
currently planning to complete the following four three of the content:

Part 1 : Data Collection and Dataset Construction.

Due to the fact that the NIF method involves two networks, namely the outer network
and the inner network, with the demarcation point being the Axis Aligned Bounding
Box (AABB), I plan to utilize BrlcadObject::compute_local_bbox() to compute the
object's collision box.

In the process of data selection, I will first use #method1 to randomly obtain some
points. Then, I plan to build a neural network based on active learning. This neural
network can help me filter out boundary points lying between 0 and 1, which are
more conducive to training.

In selecting methods, I will primarily focus on the boundary-based active learning
approach, as proposed by Jiang et al. in Minimum-Margin Active Learning[2]. I hope
to employ this method to identify the following type of data:

Finally, I aim to perform density-differentiated sampling on both boundary and
non-boundary data, using these data to train the model.

Part 2 : Finish the Neural Network Framework.

In previous work, the GRID ENCODING APPROACH has been finished. The next step was
to finish the outer network and inner network.

I will continue development using PyTorch. In [1],the outer network in NIF contains
two hidden lay- ers with 64 nodes in each of them, whereas the inner network
comprises three hidden layers with 48 nodes each. Every hidden layer is followed by
a leaky ReLU activation function except for the last one. To meet user demands, we
will incorporate the number of hidden layers and the number of nodes as
parameters, catering to models of varying sizes. Additionally, we can consider
making neural network hyperparameters adjustable, allowing users to create
different networks and train them using their preferred methods.

In the conclusion of the previous work, the existing network structure is too simple.
Consider the following improvements:

●​ Add residual modules[3]. Residual modules can increase the depth and
expressive power of the network. By introducing skip connections, residual
modules allow the network to learn residual functions, thereby propagating
gradients more effectively and alleviating the vanishing gradient problem.

●​ Quantify Classification Uncertainty[4] This enables the model to make
more informed decisions, especially in situations where the confidence of the
prediction is low. I hope to hand over those uncertain rays to traditional
methods to ensure the final quality of the generated image, striking a balance
between quality and efficiency, with the specific threshold being determined by
the user.

.

Part 3 Rendering Efficiency and Quality Testing

To assess the feasibility of neural network-accelerated ray tracing, testing will involve
multiple models and can be broken down into the following points:

●​ Rendering Speed Comparison: Compare the rendering times between
traditional ray tracing methods and neural network-accelerated ray tracing for
each model.

●​ Image Quality Assessment: Evaluate the quality of rendered images
produced by neural network-accelerated ray tracing compared to traditional
methods.

●​ Scalability Testing: Assess the scalability of the neural network approach by
increasing the complexity of the scenes or the size of the dataset.

●​ Increase testing in complex scenarios: Testing rendering effects with
multiple entities present.

*Parts 4 Extend NIF to arbitrary camera viewpoints

Currently, the model still renders on a fixed camera. This section will explore whether
NIF can achieve rendering on a dynamic camera.

To achieve rendering on a dynamic camera, it is necessary to use deep neural
networks. Otherwise, it would be impossible to cover such a large sample space. In
NIF, the model's input is:

To extend NIF to arbitrary camera viewpoints, we can add camera parameters:

The key issue lies in how to encode these parameters to facilitate training by the
neural network.

Importance of the Project
The importance of the project lies in its potential to revolutionize the field of ray
tracing by leveraging neural networks to significantly improve rendering efficiency
while maintaining or even enhancing image quality

Deliverables
●​ A new interface for:

rt::raytrace()

●​ test interface for this method, from speed and quality
●​ Comparison report between the NN interface and traditional methods, based

on comprehensive testing with various models.
●​ Report for extend NIF to arbitrary camera viewpoints
●​ Wiki page update with detailed information about Appleseed integration.

Development Schedule
●​ Community Bonding Period

○​ Familiarizing with previous work
○​ Read related paper[1-4]
○​ Ask for other cleaning works from the mentors, if required

●​ Week 1(27 May)
○​ Familiarizing rt project in brl-cad
○​ Familiarizing details NIF papers

●​ Week 2(3 June)
○​ Build database from simple to complex
○​ Build active learning network

●​ Week 3-4(10 June)
○​ Build outer NN
○​ Do some test for outer NN

●​ Week 5(24 June)
○​ Build inner NN
○​ Do some test for inner NN

●​ Week 6(1 July)
○​ Merge two networks
○​ Add Quantify Classification Uncertainty to both network, finish

rendering with both neural network and traditional method.
●​ Week 7(8 July)

○​ Test method
○​ Build more test models,especially complex models.
○​ Improve network structure based on test results

●​ Week 8(15 July)
○​ Integrate NN framework with existing rendering pipeline in BRL-CAD.

●​ Week 9(22 July)
○​ Extend NIF to arbitrary camera viewpoints(finish framework)

●​ Week 10(29 July)
○​ Construct test cases for rendering from arbitrary camera viewpoints
○​ Extend NIF to arbitrary camera viewpoints(test framework)

●​ Week 11-12(5 August)

○​ Write report
○​ Write wiki

●​ Final week: Submit Final Evaluation and Code to the Melange Home

My preparation for the Project
●​ I have successfully build brl-cad with appleseed from source code
●​ I have read the whole report about "BRL-CAD Neural Rendering" and

familiarized with their code
●​ I have found some errors when build brl-cad with appleseed version 1.7+ and

I have submitted a pull request[4]
●​ I have submitted a pull request to fix bugs and finish "to-do" in rt project.[5]

Why BRL-CAD?
During a rewarding four-month internship at a geometry engine company, I honed
my skills in b-rep modeling and developed a profound interest in computational
mathematics. My passion lies at the intersection of computational geometry and
artificial intelligence, which motivated my pursuit of this program.

Why me?
I have previously interned at a company, so I believe I have decent C++ skills. In the
AI field, I have participated in several projects, although most of them were done
using Python. I began with this book [Neural Networks and Deep Learning] and
implemented most of the models
inside.(http://neuralnetworksanddeeplearning.com/).​
Here are some projects which I involved in:

DDPM-cherry​
I created a dataset of cherry blossoms and used DDPM to generate related data.

welding-prediction​
Using neural networks to predict welding deviations.

Reference

http://neuralnetworksanddeeplearning.com/
https://github.com/Rainy-fall-end/DDPM-cherry
https://github.com/Rainy-fall-end/welding-prediction

[1]Neural Intersection Functions

[2]Minimum-Margin Active Learning

[3]Resnet in resnet: Generalizing residual architectures

[4]https://github.com/BRL-CAD/brlcad/pull/117

[5]https://github.com/BRL-CAD/brlcad/pull/120

https://arxiv.org/abs/2306.07191
https://arxiv.org/pdf/1906.00025.pdf
https://arxiv.org/abs/1603.08029
https://github.com/BRL-CAD/brlcad/pull/117
https://github.com/BRL-CAD/brlcad/pull/120

	Rendering with Neural Intersection Functions
	Personal Information
	Project Information
	Project Title
	Brief Summary of Project
	Previous work
	Detailed project description
	Part 1 : Data Collection and Dataset Construction.
	Part 2 : Finish the Neural Network Framework.
	Part 3 Rendering Efficiency and Quality Testing
	*Parts 4 Extend NIF to arbitrary camera viewpoints

	Importance of the Project
	Deliverables

	Development Schedule
	My preparation for the Project
	Why BRL-CAD?
	Why me?
	Reference

