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Project Title 
Rendering with Neural Intersection Functions 

Brief Summary of Project 
Ray tracing involves computationally expensive calculations and geometry with 
varying degrees of complexity. According to Fujieda et. al[1], a novel Neural 
Intersection Function can be used for ray intersection queries. This method has 
better efficiency while ensuring image quality. The objective of this project is to 
implement and rigorously evaluate this Neural Intersection Function against the 
industry-standard bounding volume hierarchy (BVH) algorithm, providing a 
comprehensive comparative analysis of their respective performance characteristics. 

Previous work 
The Brl-cad Team have tried a project BRL-CAD Neural Rendering which aimed to 
encode BRL-CAD geometry into a machine learning model to develop 
three-dimensional renderings. 

In the DATA COLLECTION METHODS section, they attempted three methods: the mixed 
bounding box approach, the pure bounding box approach, and the grid approach. 

https://github.com/rsr180004/brlcad


In the encoder section, they primarily explored the TRADITIONAL ENCODING APPROACH, 
which can be further divided into SINGLE MODEL ARCHITECTURE and DUAL MODEL 
ARCHITECTURE. The former employs a single network architecture for training, while 
the latter utilizes two networks: one for determining if the ray hits the wire and the 
other for determining the distance between the hit rays and hit points. 

Subsequently, they also attempted the GRID ENCODING APPROACH, a method proposed 
by Fujieda et al[1]. 

They utilized the PyTorch C++ API to accomplish this project and rewrote the 
art::raytrace method, in work.c: 

if(neural_rendering != 1) { 

        (void)rt_shootray(&a); // This is the call to rt_shootray we need to 
edit 

    } 

    else {  // Doing neural rendering 

   ... 

    } 

 

Users can train the model beforehand by using bin/rt_trainneural *.g 
Body1.2.4.b.c.s and then define neural_rendering to determine whether to use the 
trained neural network for rendering. 

Howerver, there are still several shortcomings in this work: 

●​ The current data collection methods exhibit significant randomness. In the 
conclusion section of their report, it is mentioned that, "Variations in the 
collection of training data, as well as potential tweaks to the model, may lead 
to significant improvements in the performance of the system." 

●​ They did not fully reproduce the method mentioned in the NIF paper; they only 
implemented part of the NIF outer network and did not implement the NIF 
inner network. 

●​ The neural grid structure they used is too simple： 

self.model = nn.Sequential( 

            nn.Linear(5, 120), 

            nn.ReLU(), 

            nn.Linear(120, 80), 



            nn.ReLU(), 

            nn.Linear(80, 64), 

            nn.ReLU(), 

            nn.Linear(64, 32), 

            nn.ReLU(), 

            nn.Linear(32, 1), 

            nn.Sigmoid() 

        ) 

 

●​ During the rendering process, the camera is static, and dynamic camera 
rendering has not been implemented. 

 

Detailed project description 
This project aims to utilize NIF to accelerate the ray tracing process and explore 
whether this algorithm can be extended to arbitrary camera viewpoints. I am 
currently planning to complete the following four three of the content: 

Part 1 : Data Collection and Dataset Construction. 

Due to the fact that the NIF method involves two networks, namely the outer network 
and the inner network, with the demarcation point being the Axis Aligned Bounding 
Box (AABB), I plan to utilize BrlcadObject::compute_local_bbox() to compute the 
object's collision box. 

In the process of data selection, I will first use #method1 to randomly obtain some 
points. Then, I plan to build a neural network based on active learning. This neural 
network can help me filter out boundary points lying between 0 and 1, which are 
more conducive to training. 

In selecting methods, I will primarily focus on the boundary-based active learning 
approach, as proposed by Jiang et al. in Minimum-Margin Active Learning[2]. I hope 
to employ this method to identify the following type of data: 



 

Finally, I aim to perform density-differentiated sampling on both boundary and 
non-boundary data, using these data to train the model. 

Part 2 : Finish the Neural Network Framework. 

In previous work, the GRID ENCODING APPROACH has been finished. The next step was 
to finish the outer network and inner network. 

I will continue development using PyTorch. In [1],the outer network in NIF contains 
two hidden lay- ers with 64 nodes in each of them, whereas the inner network 
comprises three hidden layers with 48 nodes each. Every hidden layer is followed by 
a leaky ReLU activation function except for the last one. To meet user demands, we 
will incorporate the number of hidden layers and the number of nodes as 
parameters, catering to models of varying sizes. Additionally, we can consider 
making neural network hyperparameters adjustable, allowing users to create 
different networks and train them using their preferred methods. 

In the conclusion of the previous work, the existing network structure is too simple. 
Consider the following improvements: 

●​ Add residual modules[3]. Residual modules can increase the depth and 
expressive power of the network. By introducing skip connections, residual 
modules allow the network to learn residual functions, thereby propagating 
gradients more effectively and alleviating the vanishing gradient problem. 

●​ Quantify Classification Uncertainty[4] This enables the model to make 
more informed decisions, especially in situations where the confidence of the 
prediction is low. I hope to hand over those uncertain rays to traditional 
methods to ensure the final quality of the generated image, striking a balance 
between quality and efficiency, with the specific threshold being determined by 
the user. 

. 

Part 3 Rendering Efficiency and Quality Testing 

To assess the feasibility of neural network-accelerated ray tracing, testing will involve 
multiple models and can be broken down into the following points: 



●​ Rendering Speed Comparison: Compare the rendering times between 
traditional ray tracing methods and neural network-accelerated ray tracing for 
each model. 

●​ Image Quality Assessment: Evaluate the quality of rendered images 
produced by neural network-accelerated ray tracing compared to traditional 
methods. 

●​ Scalability Testing: Assess the scalability of the neural network approach by 
increasing the complexity of the scenes or the size of the dataset. 

●​ Increase testing in complex scenarios: Testing rendering effects with 
multiple entities present. 

*Parts 4 Extend NIF to arbitrary camera viewpoints 

Currently, the model still renders on a fixed camera. This section will explore whether 
NIF can achieve rendering on a dynamic camera. 

To achieve rendering on a dynamic camera, it is necessary to use deep neural 
networks. Otherwise, it would be impossible to cover such a large sample space. In 
NIF, the model's input is: 

 

To extend NIF to arbitrary camera viewpoints, we can add camera parameters: 

 

The key issue lies in how to encode these parameters to facilitate training by the 
neural network. 

Importance of the Project 
The importance of the project lies in its potential to revolutionize the field of ray 
tracing by leveraging neural networks to significantly improve rendering efficiency 
while maintaining or even enhancing image quality 

Deliverables 
●​ A new interface for: 

rt::raytrace() 



 

●​ test interface for this method, from speed and quality 
●​ Comparison report between the NN interface and traditional methods, based 

on comprehensive testing with various models. 
●​ Report for extend NIF to arbitrary camera viewpoints 
●​ Wiki page update with detailed information about Appleseed integration. 

Development Schedule 
●​ Community Bonding Period 

○​ Familiarizing with previous work 
○​ Read related paper[1-4] 
○​ Ask for other cleaning works from the mentors, if required 

●​ Week 1(27 May) 
○​ Familiarizing rt project in brl-cad 
○​ Familiarizing details NIF papers 

●​ Week 2(3 June) 
○​ Build database from simple to complex 
○​ Build active learning network 

●​ Week 3-4(10 June) 
○​ Build outer NN 
○​ Do some test for outer NN 

●​ Week 5(24 June) 
○​ Build inner NN 
○​ Do some test for inner NN 

●​ Week 6(1 July) 
○​ Merge two networks 
○​ Add Quantify Classification Uncertainty to both network, finish 

rendering with both neural network and traditional method. 
●​ Week 7(8 July) 

○​ Test method 
○​ Build more test models,especially complex models. 
○​ Improve network structure based on test results 

●​ Week 8(15 July) 
○​ Integrate NN framework with existing rendering pipeline in BRL-CAD. 

●​ Week 9(22 July) 
○​ Extend NIF to arbitrary camera viewpoints(finish framework) 

●​ Week 10(29 July) 
○​ Construct test cases for rendering from arbitrary camera viewpoints 
○​ Extend NIF to arbitrary camera viewpoints(test framework) 

●​ Week 11-12(5 August) 



○​ Write report 
○​ Write wiki 

●​ Final week: Submit Final Evaluation and Code to the Melange Home 

My preparation for the Project 
●​ I have successfully build brl-cad with appleseed from source code 
●​ I have read the whole report about "BRL-CAD Neural Rendering" and 

familiarized with their code 
●​ I have found some errors when build brl-cad with appleseed version 1.7+ and 

I have submitted a pull request[4] 
●​ I have submitted a pull request to fix bugs and finish "to-do" in rt project.[5] 

Why BRL-CAD? 
During a rewarding four-month internship at a geometry engine company, I honed 
my skills in b-rep modeling and developed a profound interest in computational 
mathematics. My passion lies at the intersection of computational geometry and 
artificial intelligence, which motivated my pursuit of this program. 

Why me? 
I have previously interned at a company, so I believe I have decent C++ skills. In the 
AI field, I have participated in several projects, although most of them were done 
using Python. I began with this book [Neural Networks and Deep Learning] and 
implemented most of the models 
inside.(http://neuralnetworksanddeeplearning.com/).​
Here are some projects which I involved in: 

DDPM-cherry​
I created a dataset of cherry blossoms and used DDPM to generate related data. 

welding-prediction​
Using neural networks to predict welding deviations. 

Reference 

http://neuralnetworksanddeeplearning.com/
https://github.com/Rainy-fall-end/DDPM-cherry
https://github.com/Rainy-fall-end/welding-prediction


[1]Neural Intersection Functions 

[2]Minimum-Margin Active Learning 

[3]Resnet in resnet: Generalizing residual architectures 

[4]https://github.com/BRL-CAD/brlcad/pull/117 

[5]https://github.com/BRL-CAD/brlcad/pull/120 

 

 

 

 

https://arxiv.org/abs/2306.07191
https://arxiv.org/pdf/1906.00025.pdf
https://arxiv.org/abs/1603.08029
https://github.com/BRL-CAD/brlcad/pull/117
https://github.com/BRL-CAD/brlcad/pull/120
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