Modular Arithmetic

Modular arithmetic is a useful algebraic transformation technique. It allows operations like
addition, subtraction and multiplication to be performed parallely whereas the normal
methods for doing arithmetic are serial. Efficient algorithms to manipulate large numbers can
be found using modular arithmetic.

In this section we study how modular arithmetic could be used to efficient multiplication of
large integers. The process for integer multiplication using modular arithmetic is shown in
figure given below.

conventional
_ multiplication integer
integers
products
o Chinese Remainder
division .
Algorithm
integers products
mod p rpod P mod p
multiplication

Figure 9.3 Integer multiplication by mod p transformations

Introduction:

In modular arithmetic, the numbers we are dealing with are just integers and the operations
used are addition, subtraction, multiplication and division. The only difference between
modular arithmetic and the arithmetic you learned in your primary school is that in modular
arithmetic all operations are performed regarding a positive integer, i.e. the modulus.

Before going into modular arithmetic, let's review some basic concepts. The division theorem
tells us that for two integersaand b whereb # 0, there always exists unique
integers g and 7 such thata = gb + rand 0 <r < |b|.

For example,a= 17, b5=3, we can findg= 5 andr= 2 so that 17 = 3*5+2.ais called
the dividend, b is called the divisor, g is called the quotient and 7 is called the remainder.
If = 0, then we say b divides « or a is divisible by b. This establishes a natural congruence
relation on the integers. For a positive integer n, two integers a and b are said to
be congruent modulo 7 (or ais congruent to b modulo n), ifaand b have the same

remainder when divided by z (or equivalently if a — b is divisible by n). It can be expressed
as a = b mod n. n is called the modulus.

Example :

e Two odd numbers are congruent modulo 2 because all odd numbers can be
written as 2n+1;

e Two even numbers are congruent modulo 2 because all even numbers can be
written as 2n+0;

e 38=23mod 15 because 38 =15*2 + 8 and 23 = 15 +8;
e -1=1mod2because -1 =-1*%2+1 and 1 =0%*2+1;

e 8=3mod 5 because 8 = 5+3 and 3 = 0*5+3;

e -8=2mod 5 because -8 =-2*5+2 and 2 = 0*5+2;

o & #% -8 mod 5 because 8 = 5+3 and -8 = -2*5+2. The remainders 3 and 2 are
not the same.

In modular arithmetic, the following are the definitions of addition, subtraction and
multiplication.

The set of integers (0,1,2,...... ,p-1} where p is prime form the Galois field of p denoted as
GF(p). If a,b € GF(p) then:

a-+b if at+b<yp

a+b—p if a+b>p
a—b if a—b>0

(¢ =b) mod p = {a—b+p if a—b<0

(a+b) modp = {

(3+2) mod 7 =5

(ab) mod p = r such that r is the remainder when the product ab is divided
by p; ab = gp + r, where 0 < r < p.

(a/b) mod p = (ab!) mod p = r, the unique remainder when ab™! is
divided by p; ab ! =¢gp+r, 0 <r < p.

The factor b~ ! is the multiplicative inverse of b in GF(p). For every element
b in GF(p) except zero, there exists a unique element called b~! such that
bb ! mod p=1.

Example:

By definition we know that to find £ = b~!, there mu.st- exist an integer
k, 0 <k < p, such that bz = kp + 1. For example, if p =7,
b 1 2 3 4 5 6 (clement)
bl: 1 4 5 2 3 6 (inverse)
k- 0121265

Integer arithmetic using modular arithmetic:
Steps:

1. Represent integers as a set of moduli.

2. Perform arithmetic on the moduli

3. Convert the result of step2 to integer

Now let’s see how we can use modular arithmetic as a transformation
technique to help us work with integers. We begin by looking at how we can
represent integers using a set of moduli, then how we perform arithmetic
on this representation, and finally how we can produce the proper integer

result.
Let o and b be integers and suppose that ¢ is represented by the r-
tuple (ay,...,a;), where a; = @ mod p;, and b is represented by (by,....b;),

where b; = b mod p;. The p; are typically single precision primes. This is
called a mized radiz representation which contrasts with the conventional
representation of integers using a single radix such as 10 (decimal) or 2
(binary). The rules for addition, subtraction, and multiplication using a
mixed radix representation are as follows:

(a1,...,ar) + (b1y...,) = ((a1 +b1) mod ps,...,(a, + b)) mod p;)
(@py...,ap)(by,....by) = ((a1by) mod pq,...,(arb;) mod p,)

Example 9.9 For example, let the moduli be p;y = 3, po = 5, and p3 = 7
and suppose we start with the integers 10 and 15.

10 = (10 mod 3,10 mod 5,10 mod 7) = (1,0,3)
15 = (15 mod 3,15 mod 5,15 mod 7) = (0,0,1)

Then

10415 = (25 mod 3,25 mod 5,25 mod 7) = (1,0,4)
= (14+0mod 3,0+0mod5,3+1mod7) = (1,0,4)

Also 15—10 = (5 mod 3,5 mod 5,5 mod 7) = (2,0,5)
= (0—1mod3,0—0mod51—3mod7) = (2,0,5)

Also 10%15 = (150 mod 3,150 mod 5,150 mod 7) = (0,0, 3)
= (1*0mod3,0x0 mod53*1mod7) = (0,0,3) O

After we have performed some desired sequence of arithmetic operations
using these r-tuples, we are left with some r-tuple (¢q,...,c¢.). We now need
some way of transforming back from modular form with the assurance that
the resulting integer is the correct one. = - '

Converting (c,,c,,Cs,. . .C,) to integer form can be done by using One Step Chinese Remainder
Algorithm

Euclidean Algorithm:

The Euclidean algorithm is arguably one of the oldest and most widely known algorithms. It
is a method of computing the greatest common divisor (GCD) of two integers a and b. It
allows computers to do a variety of simple number-theoretic tasks, and also serves as a
foundation for more complicated algorithms in number theory.

The Euclidean algorithm is basically a continual repetition of the division algorithm for
integers. The point is to repeatedly divide the divisor by the remainder until the remainder is
0. The GCD is the last non-zero remainder in this algorithm. The example below
demonstrates the algorithm to find the GCD of 102 and 38:

102=2*38+26
38=1*26+12
26=2*12+2
12=6*2+0

The GCD is 2 because it is the last non-zero remainder that appears before the algorithm
terminates.

Recursive Implementation of Euclid's Algorithm

Algorithm GCD(a, b)
// Assume a > b > 0.

if 6 # 0 then return GCD(b,a mod b);
else return a;

SOk W=

}

ged(22,8) = ged(8,6) = ged(6,2) = ged(2,0) =2

and ged(21,13) = ged(13,8) = ged(8,5) = ged(5, 3)
=ged(3,2) = ged(2,1) = ged(1,0) =1 O

Extended Euclidean Algorithm

1 Algorithm ExEuclid{ft, p)

2 // bis in GF(p), p being a prime. ExEuclid is a function
3 // whose result is the integer = such that bx + kp = 1.
4

5 c:=p;d:=0b; x:=0; y := 1;

6 while (d # 1) do

7

8 q:= le/d];

9 e:=c—d=*g;

10 W = T — Y * (3

11 c:=d;d:=e; xr:=y; y = w;

12

13 if vy < 0 then y :— y + p;

14 return y;

15 }

ExEuclid(7, 11) trace:

b p C d X % q e w

7 11 11 7 0 1 1 4 -1 (0-1*1)

7 11 7 4 1 -1 1 3 2 (1-(-1*1))
7 11 4 3 -1 2 1 1 -3 (-1—(2*1))
7 11 3 1 2 -3

When d=1, we return y if y>=0 or else we return (y+p) .In the above example as y<0 the algorithm
returns (y+p) i.e. -3+11 =8.

Algorithm OneStepCRA(a, p, b, q)
// a and b are in GF(p), ged(p, q) = 1. This function
// returns a ¢ such that ¢ mod p = ¢ and ¢ mod ¢ = b.

t:=a mod g; pb:= p mod gq; s := ExEuclid(pb, q);
u:= ((b—1) *xs) mod ¢; if (v < 0) then v := u+ ¢;
{:=ux*p+a; return t;

CO =1 UL b=

Algorithm 9.12 One-step Chinese Remainder Algorithm

In the algorithm 9.12, Extended Euclidean Algorithm is used to return multiplicative inverse of a
number ‘b’ w.rt. a prime number ‘p’. One Step CRA is used to convert the result of mod p
multiplication to integer product.

Example :

Example 9.10 Suppose we wish to take 4, 6, and 8 and compute 4 + 8 x 6
= 52. Let p; =7, and py = 11.

4 — (4 mod 7,4 mod 11) — (4,4)
6 = (6 mod 7,6 mod 11) = (6,6)
8 = (8 mod 7,8 mod 11) = (1,8)
8x6 = (6x1mod 7,8x6 mod 11) = (6,4)
4486 = (4+6mod7,4+4mod1l) = (3,8)

So, we must convert the 2-tuple (3, 8) back to integer notation. Using
OneStepCRA with a = 3,0 =8,p =7, and ¢ = 11, we get

t=amod g=3 mod 11 =3

pb=pmod g =7mod 11 =7

s = ExEuclid(pb, q) =8; k=5

u={(b—t)s) mod ¢g=(8—-3)8mod 11 =40 mod 11 =7
return (uxp+a) =7*x7+3 =52 O

So, the computation 4+8*6 is done in three steps using modular arithmetic:

Step 1: Divide the integers in the computation by the prime numbers p;,p,,ps.... And store the
corresponding remainders (i.e. representing the integers as moduli)

Step 2: Do the computation using ‘mod p’ addition and ‘mod p’ multiplication on the remainders

obtained in step 1 (perform arithmetic on moduli)

Step 3: Apply one step CRA to convert the result of step 2 to integer product.

EXTRA READING MATERIAL

Extended Euclidean Algorithm:

The Extended Euclidean algorithm is an algorithm to compute integers x and y such that

ax+by=gcd(a,b)

given a and b.

If we let ‘a’ to be a prime ‘p’ and b €GF(p) then GCD(p,b)=1. Extended Euclidean Algorithm
finds integers ‘x’ and ‘y’ such that px+by=1 which implies that y’ is multiplicative inverse

of b mod p.

The existence of such integers is guaranteed by Bézout's lemma.

The extended Euclidean algorithm can be viewed as the reciprocal of modular

exponentiation.

By reversing the steps in the Euclidean algorithm, it is possible to find these integers x and y.
The whole idea is to start with the GCD and recursively work our way backwards. This can
be done by treating the numbers as variables until we end up with an expression that is a

linear combination of our initial numbers.

Example: 56s+15t =gcd(56,15) find s and t.

ged (56,15)

36=153)+11 56-15(3)=11
15=11(1)+4 15-11(1)=4
11=4(2)+3 11-4(2)=3
4=3(1)+1 4-3(1)=1

4-3(1)=1
4-(11-4(2))=1
4(3)-11=1
(3(15-11(1)-11=1
(315-(4)11=1

(3)15-(4) (56-15(3))=1

https://brilliant.org/wiki/bezouts-identity/

Rewrite

