
Modular Arithmetic 

Modular arithmetic is a useful algebraic transformation technique. It allows operations like 
addition, subtraction and multiplication to be performed parallely whereas the normal 
methods for doing arithmetic are serial. Efficient algorithms to manipulate large numbers can 
be found using modular arithmetic. 

In this section we study how modular arithmetic could be used to efficient multiplication of 
large integers. The process for integer multiplication using modular arithmetic is shown in 
figure given below.  

 

 

Introduction: 

In modular arithmetic, the numbers we are dealing with are just integers and the operations 
used are addition, subtraction, multiplication and division. The only difference between 
modular arithmetic and the arithmetic you learned in your primary school is that in modular 
arithmetic all operations are performed regarding a positive integer, i.e. the modulus. 

Before going into modular arithmetic, let's review some basic concepts. The division theorem 
tells us that for two integers a and b where b ≠ 0, there always exists unique 
integers q and r such that a = qb + r and 0 ≤ r < |b|.  

For example, a = 17, b=3, we can find q = 5 and r = 2 so that 17 = 3*5+2. a is called 
the dividend, b is called the divisor, q is called the quotient and r is called the remainder. 
If r = 0, then we say b divides a or a is divisible by b. This establishes a natural congruence 
relation on the integers. For a positive integer n, two integers a and b are said to 
be congruent modulo n (or a is congruent to b modulo n), if a and b have the same 



remainder when divided by n (or equivalently if a − b is divisible by n ). It can be expressed 
as a ≡ b mod n. n is called the modulus. 

Example : 

●​ Two odd numbers are congruent modulo 2 because all odd numbers can be 
written as 2n+1; 

●​ Two even numbers are congruent modulo 2 because all even numbers can be 
written as 2n+0; 

●​ 38 ≡ 23 mod 15 because 38 = 15*2 + 8 and 23 = 15 +8; 

●​ -1 ≡ 1 mod 2 because -1 = -1*2+1 and 1 = 0*2+1; 

●​ 8 ≡ 3 mod 5 because 8 = 5+3 and 3 = 0*5+3; 

●​ -8 ≡ 2 mod 5 because -8 = -2*5+2 and 2 = 0*5+2; 

●​ 8 ≢ -8 mod 5 because 8 = 5+3 and -8 = -2*5+2. The remainders 3 and 2 are 
not the same. 

 

In modular arithmetic, the following are the definitions of addition, subtraction and 
multiplication. 

The set of integers (0,1,2,……,p-1} where p  is prime form the Galois field of p denoted as 
GF(p). If a,b € GF(p) then: 

 

(3+2) mod 7 =5 

 

 

Example: 



 

Integer arithmetic using modular arithmetic: 

Steps: 

1. Represent integers as a set of moduli. 

2. Perform arithmetic on the moduli 

3. Convert the result of step2 to integer 

 



 

 

Converting (c1,c2,c3,…cr) to integer form can be done by using One Step Chinese Remainder 
Algorithm 

Euclidean Algorithm: 

The Euclidean algorithm is arguably one of the oldest and most widely known algorithms. It 
is a method of computing the greatest common divisor (GCD) of two integers a and b. It 
allows computers to do a variety of simple number-theoretic tasks, and also serves as a 
foundation for more complicated algorithms in number theory. 

The Euclidean algorithm is basically a continual repetition of the division algorithm for 
integers. The point is to repeatedly divide the divisor by the remainder until the remainder is 
0. The GCD is the last non-zero remainder in this algorithm. The example below 
demonstrates the algorithm to find the GCD of 102 and 38: 

102=2*38+26 
38​=1*26+12 
26=2*12+2 
12=6*2+0 
 



The GCD is 2 because it is the last non-zero remainder that appears before the algorithm 
terminates. 

Recursive Implementation of Euclid's Algorithm 

 

 

Extended Euclidean Algorithm 

 

ExEuclid(7, 11) trace: 

b p c d x y q e w 
7 11 11 7 0 1 1 4 -1  (0-1*1) 
7 11 7 4 1 -1 1 3 2   (1-(-1*1)) 
7 11 4 3 -1 2 1 1 -3  (-1 –(2*1)) 
7 11 3 1 2 -3    
  

When d=1, we return y if y>=0 or else we return (y+p) .In the above example as y<0 the algorithm 

returns (y+p) i.e. -3+11 =8. 



 

 

In the algorithm 9.12,  Extended Euclidean Algorithm is used to return multiplicative inverse of a 

number ‘b’ w.r.t. a prime number ‘p’. One Step CRA is used to convert the result of mod p 

multiplication to integer product.  

Example : 

 

 

 

So, the computation 4+8*6 is done in three steps using modular arithmetic: 

Step 1: Divide the integers in the computation by the prime numbers p1,p2,p3…. And store the 

corresponding remainders (i.e. representing the integers as moduli) 



Step 2: Do the computation using ‘mod p’ addition and ‘mod p’ multiplication on the remainders 

obtained in step 1 (perform arithmetic on moduli) 

Step 3: Apply one step CRA to convert the result of step 2 to integer product. 

 

 

EXTRA READING MATERIAL  

---------------------------------------------------------------------------------------------------------------- 

Extended Euclidean Algorithm: 

The Extended Euclidean algorithm is an algorithm to compute integers x and y such that 

ax+by=gcd(a,b) 
 
given a and b. 

If we let ‘a’ to be a prime ‘p’ and b €GF(p) then GCD(p,b)=1. Extended Euclidean Algorithm 
finds integers ‘x’ and ‘y’ such that px+by=1 which implies that ‘y’ is multiplicative inverse 
of b mod p.  

The existence of such integers is guaranteed by Bézout's lemma. 

The extended Euclidean algorithm can be viewed as the reciprocal of modular 
exponentiation. 

By reversing the steps in the Euclidean algorithm, it is possible to find these integers x and y. 
The whole idea is to start with the GCD and recursively work our way backwards. This can 
be done by treating the numbers as variables until we end up with an expression that is a 
linear combination of our initial numbers.  

Example: 56s+15t =gcd(56,15) find s and t. 

 

 

 

 

 

 

https://brilliant.org/wiki/bezouts-identity/


​ Rewrite 
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