Here's a detailed explanation of how to etch a PCB using hydrogen peroxide (H₂O₂), citric acid, and salt, including chemistry, materials, mixing, temperature, and safety.

OVERVIEW: Why This Etchant Works

This etchant relies on:

- Hydrogen Peroxide (H_2O_2) a mild oxidizer
- Citric Acid a weak organic acid that helps dissolve copper ions
- Salt (NaCl) boosts conductivity and helps generate reactive chlorine species

Together, they:

- Oxidize copper metal (Cu) from the PCB
- **Dissolve it into solution** as Cu²⁺ ions

MATERIALS NEEDED

Item	Quantity	Notes
Hydrogen Peroxide	100 ml (3% pharmacy grade)) Oxidizing agent
Citric Acid	1 tsp (~5g)	Food-grade or lab-grade
Salt (NaCl)	½ to 1 tsp	Table salt, non-iodized preferred
Plastic or Glass Container	1	No metal!
Warm Water Bath	Optional (40–50°C)	For faster etching
Tongs/Gloves/Goggles	Required	Safety gear
Copper-Clad PCB	Your blank PCB board	Cleaned before use

宗 MIXING INSTRUCTIONS

- 1. In your plastic/glass container:
 - o Add 100 ml hydrogen peroxide (3%)
 - o Stir in 1 tsp citric acid
 - o Add ½ tsp of salt and stir well
 - o Optional: Slightly warm the solution to 40–50°C in a hot water bath (NOT over flame!)
- 2. Check pH (optional but ideal): Should be slightly acidic (~pH 2–4)

PREP THE PCB

- 1. Cut your copper-clad board to size.
- 2. Clean it with:
 - o Fine steel wool or abrasive pad
 - o Acetone or isopropyl alcohol
- 3. Apply your etch-resistant mask:
 - o Toner transfer, permanent marker, or photoresist film

ETCHING PROCESS

- 1. Place your masked PCB **copper side up** in the solution.
- 2. Gently swirl the container or use a soft brush occasionally.
- 3. You'll see bubbles and the copper slowly disappearing.
- 4. **Etch time** depends on temp and agitation:
 - o \sim **10–20 minutes** at 50°C
 - o ~30-60 minutes at room temperature

WHAT'S HAPPENING CHEMICALLY?

Oxidation of Copper:

Hydrogen peroxide oxidizes copper metal:

Cu (s) +
$$H_2O_2 \rightarrow Cu^2 + 2OH^-$$

Citric acid helps keep the Cu²⁺ ions dissolved in solution by forming **copper citrate** complexes.

Salt (NaCl) may generate **trace amounts of chlorine**, boosting oxidation slightly:

 $H_2O_2 + Cl^- \rightarrow Cl_2$ (trace, unstable)

AFTER ETCHING

- 1. Remove the PCB with plastic tweezers or tongs.
- 2. Rinse thoroughly under running water.
- 3. Scrub off the resist with acetone or alcohol.
- 4. Neutralize the used solution with **baking soda** (slowly sprinkle until fizzing stops).
- 5. Dispose of it according to local regulations (it contains copper ions).

A SAFETY TIPS

- Always wear gloves and safety goggles
- Perform in a well-ventilated area
- Never mix with bleach or acids like HCl (produces chlorine gas)
- Do not use metal containers

PRO TIPS

- Heating to 45–50°C cuts etch time in half
- Stirring speeds up the etch
- You can re-use the solution 1–2 times, but it gets weaker
- Store in dark bottles if saving for short-term reuse (label clearly)

Would you like a PDF version or printable step-by-step guide with diagrams?