Simple Harmonic Motion (SHM)

I. Vibrating Mass on a Spring

$$KE_1 + PE_1 = KE_2 + PE_2$$

Where is the acceleration the greatest? Why?

Smallest? Why?

II. Period

- time for one full _____
- determined by _____ and _____

T = _____

III. Energy Changes – Conservation of Energy

PE at C equals

 $\mathbf{E}\mathbf{x}$) Mass M is attached to a spring with a spring constant \mathbf{k}

If the **maximum displacement** of a mass **M** from its equilibrium position is **A**, find the **velocity** of the mass at B is

Position as a function of time

$$X = A\cos\theta$$

Since we can replace θ with ωt .

$$X = A\cos(\omega t)$$

Where A is amplitude, T is period, and t is time.

$$X = Acos([___]t)$$

$$X = Acos([___]t)$$

What is the amplitude? Period?

$$x = A\cos\left(\frac{2\pi}{T}t\right)$$

Velocity as a function of time

We can also derive the equation for velocity as a function of time.

$$v = -v_0 \sin \theta$$

Since $v=\omega r$ can replace v with ωA as well as θ with ωt .

$$v = -A\omega \sin(\omega t)$$

And again we can also replace $\,\omega$ with $2\pi f$ or $2\pi/T$.

$$v = -A \left(\frac{2\pi}{T}\right) \sin\left(\frac{2\pi}{T}t\right)$$

Where A is amplitude, T is period, and t is time.

Sample Problems

- 1. A block with a mass M is attached to a spring with a spring constant k. The block undergoes SHM. Where is the block located when its velocity is a maximum in magnitude?
 - A) x = 0
- B) $x = \pm A$
- C) x = +A/2
- D) x = -A/2
 - E) None of the above

- 2. A block with a mass M is attached to a spring with a spring constant k. The block undergoes SHM. Where is the block located when its potential energy is a maximum?
 - A) x = 0
- B) $x = \pm A$
- C) x = +A/2
- D) x = -A/2
- E) None of the above

- 3. A block with a mass M is attached to a spring with a spring constant k. The block undergoes SHM. Where is the block located when its acceleration is a minimum in magnitude?
 - A) x = 0
- B) $x = \pm A$ C) x = +A/2 D) x = -A/2
- E) None of the above
- 4. A mass-spring oscillating system undergoes SHM with a period T. What is the period of the system if the amplitude is doubled?
 - A) 2T
- B) 4T
- C) T
- D) 1/2T
- E) 1/4T
- 5. A mass-spring oscillating system undergoes SHM with a period T when it is located on Earth. What is the period of the system when it is located on Moon?
 - A) 6T
- B) T/6
- C) √6 D) √6 T
- E) T

- 6. A block with a mass M is attached to a vertical spring with a spring constant k. When the block is displaced from equilibrium and released its period is T. A second identical spring k is added to the first spring in parallel. What is the period of oscillations when the block is suspended from two springs?
 - A) 2T
- B) 4T
- C) T
- D) √2
- E) √2 T

7. Two oscillating systems: spring-mass and simple pendulum undergo SHM with an identical period T. If the mass in each system is doubled which of the following is true about the new period?

Mass-spring

$$T \frac{T}{\sqrt{2}} \frac{T}{\sqrt{2}}$$

A) T T

D)
$$\sqrt{2} T \sqrt{2} T$$

E)
$$T$$
 T

Simple pendulum

$$\frac{T}{\sqrt{2}}\frac{T}{\sqrt{2}}$$

$$T$$
 T

$$T$$
 T

$$T$$
 T

$$\sqrt{2} T \sqrt{2} T$$

- 8. An object undergoes SHM and position as a function of time is presented by the following formula: $x = (0.1 \text{ m}) \text{Sin}(4\pi t)$. What is the period of oscillations?
 - A) 2 s
- B) 1 s
- C) 0.5 s
- D) 0.1 s
- E) 4 s
- 9. An object undergoes SHM and position as a function of time is presented by the following formula: $x = (0.5 \text{ m}) \text{ Cos } (\Pi \text{t})$. What is the amplitude of oscillations?
 - A) 2 m
- B) 1 m
- C) 0.5 m
- D) 0.1 m
- E) 4 m

10. The position as a function of time of a mass-spring oscillating system is presented by the graph. Which of the following is true about velocity and acceleration at the time 1.5 s?

Velocity

Acceleration

A)
$$v > 0$$

B)
$$v = 0$$

$$a = 0$$

C)
$$v = 0$$

D)
$$v > 0$$

$$a = 0$$

E)
$$v < 0$$

$$a = 0$$

11. A particle undergoes SHM represented by the graph. Which of the following is true about the amplitude and period of oscillations?

Amplitude

Period

0.1 s

0.5 s

0.6 s

0.8 s

E) 2 m 0.4 s

12. An object oscillates at the end of a spring. The position as a function of time is presented by the graph. Which of the following formulas represent the position and velocity of the object?

Position

A)
$$x = (0.5) Sin(\pi t)$$

B)
$$x = (0.5) \sin(\pi t)$$

C)
$$x = (0.5) \cos(\pi t)$$

D)
$$x = (0.5\pi) \sin(\pi t)$$

E)
$$x = (0.5) \cos(\pi t)$$

Velocity

$$v = (0.5\pi) \sin(\pi t)$$

$$v = (0.5\pi) \cos(\pi t)$$

$$v = (0.5\pi) \sin(\pi t)$$

$$v = (0.5) Sin(\pi t)$$

$$v = (0.5\pi) \cos(\pi t)$$