CSE 414 Section 2

1. Joins Examples

Given tables created with these commands:
CREATE TABLE A (a int);
CREATE TABLE B (b int);
INSERT INTO A VALUES (1),
INSERT INTO B VALUES (3),

What’s the output for each of the following:

SELECT * FROM A INNER JOIN B ON
A.a=B.b;

alb

313

414

SELECT * FROM A INNER JOIN B;
alb
113
114
115
116
213
214
215
216
313
314
315

316

413
414
415
416

SELECT * FROM A LEFT OUTER JOIN B ON
A.a=B.Db;

alb
1
2
313

414

SELECT * FROM A RIGHT OUTER JOIN B ON

A.a=B.b;
alb

313

414

|5

| 6
SELECT * FROM A FULL OUTER JOIN B ON
A.a=B.b;
alb

1

2

313

414

|5

|6
SELECT a AS ¢ FROM A UNION SELECT b AS ¢ FROM B;

C

1

SELECT a AS ¢ FROM A UNION ALL SELECT b AS c¢ FROM B;

Sidenote: sglite3 supports neither RIGHT OUTER nor FULL
OUTER.

Right outer can be implemented with SELECT * FROM B LEFT OUTER JOIN
A ON A.a=B.b;

Full outer can be implemented with:

SELECT * FROM A LEFT OUTER JOIN B ON A.a=B.Db
UNION

SELECT * FROM B LEFT OUTER JOIN A ON A.a=B.b;

We haven’t talked about UNION really, but it’s the same as the
set operation

Union selects distinct wvalues

Union all select even duplicate values

2. SQL Practice

CREATE TABLE Movies (id int, name varchar (30), budget int,
gross int, rating int, year int, PRIMARY KEY (id));

CREATE TABLE Actors (id int, name varchar(30), age int, PRIMARY
KEY (id))

CREATE TABLE ActsIn (mid int, aid int, FOREIGN KEY (mid)
REFERENCES Movies (id), FOREIGN KEY (aid) REFERENCES Actors (id));

What is the number of movies, and the average rating of all movie that the actor
"Patrick Stewart” has appeared in?

SELECT count(*), avg(M.rating)

FROM Movies as M, ActsIn as AI, Actors as
A

WHERE M.id = AI.mid AND A.id = AI.aid AND A.name = “Patrick
Stewart”;

What is the minimum age of an actor who has appeared in a movie where the gross of
the movie has been over $1,000,000,000?

SELECT

min (age)

FROM Movies as M, ActsIn as AI, Actors as
A

WHERE M.id = AI.mid AND AI.aid = A.id AND M.gross > 1000000000;

What is the total budget of all movies released in year 2017, where the oldest actor is less
than 307

SELECT
sum (M.budget)

FROM Movies as M, ActsIn as AI, Actors as
A

WHERE M.id = AI.mid AND AI.aid = A.id AND M.year =
2017

GROUP BY
M.id

HAVING max (A.age) <
30;

3. Self Join

Consider the following over simplified Employee table:
CREATE TABLE Employees (id int, bossOf int);

Suppose all employees have an id which is not null. How would we find all distinct pairs of
employees with the same boss?

SELECT El.bossOf,
E2.bossOf

FROM Employees AS El, Employees AS
E2

WHERE El.id = E2.id AND El.bossOf >
E2.bossOf;

Sidenote: The predicate “El.bossOf > E2.bossOf” could also be
written as “El.bossOf < E2.bossOf”. We cannot use plain
inequality as the predicate condition because this would lead

to duplicate pairs.

