
Private Data Availability on Celestia

Motivation
Want to provide a credibly neutral place where data availability (DA) for the general public
has strong assurances, but also selective disclosure of the data’s contents. As anyone may
be able to retrieve the data, we want a way to define the conditions that enable reading the
content of the data.

With a decentralized DA network like Celestia, protocols requiring access to this data have
robust assurance that, once published, data cannot be withheld from any party (retrievability)
for a period of time. With Data Availability Sampling (DAS), anyone can succinctly verify that
DA has occurred without retrieving the original data.

Research Considerations

Requirements
DA must be tightly coupled with protocols to selectively disclose [parts of] the some
otherwise private data contents to defined parties with specific conditions being fulfilled.

Properties of the protocol that should apply to provide value in using Private DA

●​ Require publishing data to DA for a protocol to progress
○​ Integrate verification that DA has occurred

●​ Require data published contains the correct information
○​ Verifiable encryption methods

●​ Provide methods to reveal data contents
○​ Decryption methods with key generation/derivation assurances

Tools & Techniques
We want verifiable computation of encryption . A “Verifiable Virtual Machine” abstractly is
likely what we want, although custom purpose-built mechanisms should be considered
based on performance needs.

zkVM / VVM
Run encryption program inside of Verifiable Virtual Machine (VVM aka zkVM minus formal
“ZK” guarantees) that produces output sealed by some verifiable attestation.

●​ RISC Zero / SP1 / Others?
●​ Example: https://dorahacks.io/buidl/14098 - Stock0 - protocol to sell (photo) data

using ZKPs & smart contract escrow & DA. Uses zkVM to encrypt data in a verifiable
way.

https://en.wikipedia.org/wiki/Verifiable_computing#Verifiable_computation
https://dorahacks.io/buidl/14098

TEEs
Trusted Execution Environments enable confidential and verifiably correct computation:

Process based TEE direct use
Directly accessing trusted hardware (like Intel’s SGX) via tools is possible today, here are a
few options:

●​ https://www.fortanix.com/
○​ https://github.com/fortanix/rust-sgx rust based tooling to develop applications

- essentially just a compilation target for `rustc` for any application.
○​ https://www.fortanix.com/resources/solution-briefs/secure-key-management-f

or-blockchain-applications
●​ https://gramineproject.io/

○​ TODO: research & summary
●​ https://enarx.dev/docs/start/tee

○​ WASM (WASI) runtime that occurs in TEE (likely needs VM based
hardware, not process based?)

○​ TODO: research & summary

VM based TEE
Indirectly accessing trusted hardware via running an application in a special container/VM is
an emerging tech, here are a few options:

●​ Extending base TEE functionality, running containers/VMs in a verifiable way is a
recent phenomenon. Intel is leading here as well, but others are in the game:

●​ Intel Trust Domain Extensions (TDX)
●​ AMD Secure Encrypted Virtualization (SEV)
●​ ARM Confidential Compute Architecture (CCA)

Tooling to access this hardware has an emerging ecosystem of options:
●​ Low level working example:

https://docs.trustauthority.intel.com/main/articles/tutorial-tdx-workload.html - TDX
workload example using a key management service to send confidential data
exposed only within an attestable VM to perform some operations on. (We replace
ML with any task, {another layer of } encryption in our case.)

●​ Kata Containers -
○​ Confidential Containers (CoCo) - Framework building on Kata Containers and

integrates with Kubernetes.

Provider options for TEEs

Vendor Tech TEE Type Supports
Confidential

VMs/Containers?

Intel TDX, SGX Memory & VM Yes (Azure, GCP,
Enarx, Kata)

https://en.wikipedia.org/wiki/Trusted_execution_environment
https://www.fortanix.com/
https://github.com/fortanix/rust-sgx
https://www.fortanix.com/resources/solution-briefs/secure-key-management-for-blockchain-applications
https://www.fortanix.com/resources/solution-briefs/secure-key-management-for-blockchain-applications
https://gramineproject.io/
https://enarx.dev/docs/start/tee
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://www.amd.com/en/developer/sev.html
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://docs.trustauthority.intel.com/main/articles/tutorial-tdx-workload.html
https://katacontainers.io/
https://confidentialcontainers.org/

Vendor Tech TEE Type Supports
Confidential

VMs/Containers?

AMD SEV-SNP Memory & VM Yes (Azure, CoCo,
Kata)

ARM CCA Memory & VM Early stage

IBM Secure Execution VM Isolation Yes (used in IBM
Cloud)

AWS Nitro Enclaves Enclave (not V… Yes (via EC2)

zkVMs & TEEs
Hybrid architectures could be of great interest to provide confidential operations in the
context of a zkVM prover - just hiding specific inputs and/or a subset of operations, up to
fully confidential wrapper on the zkVM.

●​ Create an “accelerator” / co-processor for a zkVM that verifies a TEE attestation &
extracts output from some program (i.e. signing with a hidden-to-the-operator key,
perhaps on a transaction used in the zkVM) .

●​ Wrap the entire zkVM prover inside a VM based TEE, enabling fully encrypted inputs
and prover process memory from the host/operator. TEE provides attestation of
confidentiality and correctness, and zkVM provides another layer of correctness &
integrity constraints.

○​ Note: GPU based TEEs are available now, and add overhead on the order of
single-digets in cost, so likely this wrapping would be practically efficient.

○​ See
https://phala.network/posts/performance-benchmark-running-sp1-zkvm-in-tee
-h200-with-low-overhead for a concrete example of this

○​ https://github.com/Phala-Network/zk-sgx-attester - convert a SGX TEE ->
groth16 to post on EVM networks

■​ https://github.com/base/nitro-validator/ for AWS nitro (but all solidity,
we would want zkvm conversion)

○​ https://github.com/automata-network/automata-dcap-attestation - This
repo serves as a code base for the Intel Data Center Attestation
Primitive (DCAP) Web3-based Quote Verification program for both EVM
and Solana.

FHE / MPC (?)
On it’s own, the verifiable property is lacking, even with MAC protections, there is (probably)
no way without decrypting to prove that an untrusted party returned correct data.

●​ Enable semi/untrusted re-encryption of encrypted data. Coupled with some MAC
scheme, a verifiable encryption may be possible to achieve. Today, MPC is required

https://phala.network/posts/performance-benchmark-running-sp1-zkvm-in-tee-h200-with-low-overhead
https://phala.network/posts/performance-benchmark-running-sp1-zkvm-in-tee-h200-with-low-overhead
https://github.com/Phala-Network/zk-sgx-attester
https://github.com/base/nitro-validator/
https://github.com/automata-network/automata-dcap-attestation
https://en.wikipedia.org/wiki/Message_authentication_code

for FHE properties, eventually single party confidential computation is perhaps
possible.

coSNARKs
Collaborative SNARKs (coSNARKs) merge the strengths of MPC and zkSNARKs. They
allow multiple parties to collaboratively create a proof verifying the correctness of a
computation while keeping their individual inputs private.

●​ https://docs.taceo.io/docs/primer/collabSNARKs-primer/ is one promising
implementation.

●​ We now have a Noir implementation of verifiable encryption needed for PDA
started here: https://github.com/nuke-web3/noir-verifiable-chacha

Purpose-built Cryptography
There are a few verifiable encryption protocols proposed with some having a demo
implementation.

●​ Verifiable Encryption from MPC-in-the-Head (2024) is one such promising one, as an
example.​
Implementation (rust with ASM & c++ deps)
https://github.com/akiratk0355/verenc-mpcith

●​ TODO: References in paper above are a great source for more resources & work to
investigate for other novel crypto verifiable encryption protocols

Concrete Proposal

See -> Proposal - Private Data Availability

WIP private proxy

References
1.​ - original meeting notes outlining requirements Encrypted DA

a.​ - Copy of Proposal: Threshold Encryption System for Celestia blobs
followup: initial proposal

2.​ - call defining a few things around the Celestia <> Hibachi Kick-off 20 Mar 2025
first customer.​

https://docs.google.com/document/d/1tB98sjaeqJWm7VW4PMdPtxNbu7D1VmSfg9ox4r1xfzo/edit?tab=t.0
https://docs.google.com/document/d/1PfiTtSLy85q7NWeVf-YV9cqEAD14pKK2NZGiAV36xDo/edit?tab=t.0
https://docs.google.com/document/d/1Q0tJV5IxPPuI2wBOt7QXJ0RPiA6WT-cQptKmyS7Ja5o/edit?tab=t.0#heading=h.uurm1gnr1h4
https://docs.google.com/document/d/10I1fPektfaoLEm_Qj40DWgVhFUBzU-OrDT5q18Tgz8s/edit?tab=t.0#heading=h.xgz2w1m18qm
https://docs.taceo.io/docs/primer/collabSNARKs-primer/
https://github.com/nuke-web3/noir-verifiable-chacha
https://cic.iacr.org/p/1/1/3
https://github.com/akiratk0355/verenc-mpcith
https://github.com/nuke-web3/pda-proxy

Alternatives to Private DA

Single Cloud
●​ One trusted owner & operator of service to retrieve data

Redundant Cloud
●​ Multiple [independent] trusted parties running separate services to retrieve [identical]

data

Central Cloud Storage
●​

Private/Permissioned DA Network
●​

	Private Data Availability on Celestia
	Motivation
	Research Considerations
	Requirements
	Tools & Techniques
	zkVM / VVM
	TEEs
	Process based TEE direct use
	VM based TEE
	Provider options for TEEs

	zkVMs & TEEs
	FHE / MPC (?)
	coSNARKs
	Purpose-built Cryptography

	Concrete Proposal
	See -> Proposal - Private Data Availability
	WIP private proxy

	References
	Alternatives to Private DA
	Single Cloud
	Redundant Cloud
	Central Cloud Storage
	Private/Permissioned DA Network

