
What to Look For in Problem Set 4: Filter
(More/Less)

What to Look For

Evidence of a 5-point Submission
● Minimal iterations through the image; at most once for grayscale and sepia, at most

twice for blur and edges, and at most one-half (up to width / 2) for reflect
● Minimal casting, rounding, square rooting; no more casts or rounds than are strictly

necessary. You should only need a single (float) to do the math needed in this
assignment

● Clean handling of edge cases; blur handles its edge cases by changing the bounds for
the innermost two for loops, NOT by only running the contents of those two loops based
on a condition (note that edges does have to use an inner condition)

● Ideal edges implementation; uses a 2D array to store the kernel, uses the && operator
to avoid extra conditional statements, efficient iteration in inner loops

Evidence of a 4-point Submission
● like a 5-point submission, but with some small mistakes, such as:

○ a few extraneous roundings, castings, or other arithmetical operations
○ might use three lines to copy a pixel from one place to another instead of one;

i.e., might do
■ image[i][j].rgbtRed = new_image[i][j].rgbtRed

■ image[i][j].rgbtRed = new_image[i][j].rgbtRed

■ image[i][j].rgbtRed = new_image[i][j].rgbtRed

instead of image[i][j] = new_image[i][j]

○ might use a condition instead of different loop bounds to execute the inner two for
loops in blur

○ might not use a helper function to handle certain things, akin to the max/min
helper functions in the staff solution

Evidence of a 3-point Submission
● like a 4-point submission, but with one or two more serious errors, such as:

○ duplicates the image where it isn’t necessary; i.e., makes a new array in any
function except for blur and/or edges

○ extraneous iteration; grayscale or sepia iterate more than once, or blur or
edges iterate more than twice, or reflect iterates further than width / 2

○ excess conditionals that make the code much harder to read



Evidence of a 2-point Submission
● Makes a copy of the input image in any function except blur and edges
● grayscale function may unnecessarily use three separate variables to store a given

pixel’s red, green, and blue values, may use unnecessary conditionals or computation to
calculate the average

○ Unnecessary parentheses
○ More than one round
○ More than one cast

● (less) sepia function may use a for loop to iterate over the 3 RGB values, may use
unnecessary conditionals or computation to calculate the sepia values

○ Unnecessary rounding
○ Uses unnecessary conditionals that add extra computation

● reflect function copies RGB values instead of the entire pixels, uses a while loop to
iterate over half of the image

● blur function iterates over the height and width three or more times, may include many
conditions to check for edge cases

● (more) edges function iterates the height and width three or more times, may include
unnecessary conditional statements

Evidence of a 1-point Submission
● grayscale function may iterate over the height and width more than once, may not use

the round function (manually rounding)
● (less) sepia function may iterate over the height and width more than once
● reflect function iterates over more than half of the image (more than width / 2)
● blur function hard-codes edge cases
● (more) edges function hard-codes many cases, repeats large portions of code (instead

of grouping cases together)

Example Implementations (Worse vs. Better)

grayscale Function

Worse Implementation
The example below uses three unnecessary variables for RGB values, casts more than once
and includes an unnecessary conditional when calculating the average



Better Implementation
The example below uses one variable to reference the given pixel and calculates the average in
a neat and efficient way (no extraneous rounding or casting)

sepia Function (less)

Worse Implementation
The lengthy example below unnecessarily rounds three times for each sepia value,
inconsistently initializes some variables outside of the for loop and some variables inside the for



loop. May also be improved by eliminating the else statements (instead, just using the if
statements to reassign the sepiaColor value)

Better Implementation
The example below uses three variables for each RGB value, a min helper function, and rounds
in each computation just once



reflect Function

Worse Implementation
The example below uses a while loop instead of a for loop (does not iterate over half the width)

The example copies over each RGB value individually (instead of the whole pixel). Also includes
unnecessary parentheses and an unnecessary return statement



Better Implementation
The example

blur Function

Worse Implementation
This example iterates over the image an unnecessary number of times (inner-two-most for
loops unnecessarily iterate over the entire image again). Additionally, the counter variable is a
float (an int makes more sense here) and unnecessary variables are declared when calculating
the average



Better Implementation
This example handles both edge pixels and inner pixels in the same, robust way. Also begins
and ends indexing in the for loop at the proper pixel indices using min and max helper
functions (no extra calculation needed)



edges Function (more)

Worse Implementation
The example below includes unnecessary variables and an if - else statement that could be
avoided with a better choice of starting and ending indexing variables and conditional
sub-statements



Better Implementation
The example below uses a 2D matrix to store the multiplier values, and includes an efficient
choice of for loop indices and conditional sub-statements to avoid repeating unnecessary code




