
MCv0: State Transition, Purging and Tab 
Discarding 

 
TL; DR 
Update 2017-04-11: Obsoleted. This has been merged into the v0 design doc. 
 
This doc describes work-in-progress design changes in memory coordinator v0. See the original 
design doc for the motivation, success criteria and testing plan. I will update the original design 
doc when we finalize the internal design. 

Summary 
Proposal for introducing internal state for memory coordinator and replace global state with it so 
that we can build strategies for when/how to change memory state, purge memory, and request 
tab discarding. 
 

Motivation 
The current heuristic of memory coordinator was chosen when we didn’t have enough insights 
on how to become a good memory citizen. Since then we’ve got feedback and made some 
design changes. The heuristics also needs to be updated to follow up recent changes/findings: 

●​ As of crrev.com/2671303004 all purging logic moved from OnMemoryStateChange() to 
OnPurgeMemory(). State transitions no longer free up memory so we need to think 
about when/how to purge memory, in addition to when/how to change memory state. 

●​ Tab discarding is going to become a service and memory coordinator needs to trigger 
tab discarding as the replacement of MemoryPressureListener. We need to think about 
when to trigger tab discarding. 

●​ Tab suspending still requires a lot of work/verifications and we wouldn’t be able to use it 
for now. 

In this document, I propose some changes and strategies for state transition, purging and tab 
discarding. 

Generalizing global state calculation 
The current heuristic only focus on global memory state transition. It was reasonable decision 
as state transition was the key and the only task MCv0 should handle. However, calculating 
global state is no longer the only task MC should handle. It also needs to determine when to 
purge memory and when to request tab discarding. This means that the current notion of “global 
memory state” should be generalized. In other words, it would be better to have a notion/value 
that indicates how close the system is going to start swapping/compressing. We can use the 

https://docs.google.com/document/d/1rGeUzhfzIKwmBzUcqUEwxEpLQQRq3PulRuHwFBlVIYI/edit
https://crrev.com/2671303004
https://docs.google.com/document/d/1UmVuZX6co3tAnMqiI4TKkAAq0PBcdvtXTaWM0pm94kE/edit


value to determine memory state for each process, when to purge memory, when to trigger tab 
discarding, etc. 
 
That said, there won’t be significant changes from an implementation point of view. What I 
want to propose is rephasing existing values and thresholds. Specifically, 

●​ Global memory state -> Memory condition 
●​ THROTTLED global memory state -> WARNING memory condition 
●​ SUSPENDED global memory state -> CRITICAL memory condition 

 
Note that memory condition is an internal state of memory coordinator. I don’t intend to expose 
this internal state to clients/child processes at this point. base::MemoryState won’t be changed. 
Clients/child processes receive OnStateChange(state) where state = {NORMAL, THROTTLED}. 

Available memory update scheduling 
Memory condition will be calculated by using GetFreeMemoryUntilCriticalMB(). How frequently 
we should update available free memory then? This depends on how memory budget API is 
designed, and I don’t have specific plan at this point. I think we can start with every 5 seconds. 
This is almost the same as the current state update scheduling interval. 

State transition 
Memory state of a process is determined by memory pressure level and it’s visibility. 
 

Visibility \ Condition NONE WARNING CRITICAL 

Foreground NORMAL NORMAL THROTTLED 

Background NORMAL THROTTLED THROTTLED 

Purging 
We can think of a lot of options when to purge memory but I’d like to start with a very simple and 
conservative (from performance POV) one. 

●​ When memory condition becomes WARNING request purging memory to background 
processes. 



●​ When a foreground process goes background in WARNING memory condition, request 
purging memory to the process. 

●​ Don’t request purging on CRITICAL memory condition. Memory coordinator already 
requested purging for background processes at WARNING memory condition. 

The purpose of purging is to free up memory before the system starts swapping/compressing 
pages and I think above strategy aligns the purpose. 
 
If above isn’t enough, we can try other things like: 

●​ Request purging when memory condition becomes WARNING to all processes. 
●​ Schedule a task which keeps purging while memory condition remains 

WARNING/CRITICAL, with exponential backoff. 

Tab discarding 
Tab discarding will become a service and the service decides which tab should be discarded. 
Memory coordinator’s job is to trigger a tab discarding via the service. 
 
When memory condition becomes CRITICAL, memory coordinator will start a task which 
requests one tab discarding to the service. Memory coordinator keeps scheduling the task with 
some interval (e.g. 5 seconds) until memory condition becomes NORMAL/WARNING. 
 


	MCv0: State Transition, Purging and Tab Discarding 
	Summary 
	Motivation 
	Generalizing global state calculation 
	Available memory update scheduling 
	State transition 
	Purging 
	Tab discarding 


