
Apache Beam Fn API Overview 

https://s.apache.org/beam-fn-api 
Lukasz Cwik (lcwik@google.com) 

 
The Beam technical vision includes the ability to mix and 
match SDKs and runners. This is accomplished through two 
portability layers: 

1.​ The Runner API provides an 
SDK-and-runner-independent definition of a Beam 
pipeline 

2.​ The Fn API allows a runner to invoke SDK-specific 
user-defined functions 

 
Specifically, the Runner + Fn API allow: 

1.​ new SDKs to run on every runner 
2.​ new runners to run pipelines from every SDK 
3.​ (eventually) mixing transforms from different SDKs in 

one pipeline, hence leveraging each language's 
connector libraries, etc 

 
For the Fn API to be as useful as possible, it has two major design criteria: 

1.​ It should be easy for an SDK to get started with a minimal Fn API implementation 
2.​ It should be possible for an SDK to be performant by investing additional effort 

 

Overview 
Executing a user's pipeline can be broken up into the following categories: 

1.​ Perform any grouping and triggering logic including keeping track of a watermark 
2.​ Execute user definable functions (UDFs) including custom sources/sinks, splittable DoFns, regular 

DoFns, window merging, ... 
3.​ Support the execution of user definable functions with side inputs, state & timers, counters, ... 
4.​ Pipeline execution management such as polling for counter information, job status, ... 

 
Executing UDFs is the only category which requires a specific language-specific SDK context to execute in. 
Moving the execution of UDFs to language-specific SDK harnesses and using an RPC service between the 
two allows for a cross language/cross Runner portability story. 

Executing UDFs one by one in this manner would be terribly slow, so the basic design is to execute small 
subgraphs over streamed bundles of elements. This diagram summarizes: 

 

https://s.apache.org/beam-fn-api
mailto:lcwik@google.com
https://docs.google.com/presentation/d/1Tc9MdXTDicb6jVCrXjsCbbnLYQCxYiKlTYdVpRkYdBQ/edit#slide=id.g11bcfc06a9_1_1098


Components 
This sketch proposes using a docker container to encapsulate the language-specific SDK harness. The runner 
would be responsible for launching, managing and tearing down the docker container. Supporting the 
execution of UDFs are the following gRPC service definitions: 

●​ Control: A rich low bandwidth service used to tell the SDK which UDFs to execute and when to execute 
them. Also handles bundle processing progress, splitting, and counters. 

●​ Data: A high bandwidth low latency service used to move data between the language specific SDK 
harness and the runner, modelled as a logical stream of bytes. 

●​ State: A mid to high bandwidth service used to support user state, side inputs (using the paged read, 
half of the read/write state API), and group by key reiteration (ditto). 

●​ Logging: A low to mid bandwidth service used to aggregate logging information from the language 
specific SDK harness. 

API & Code References 
Runner API Protobuf definition 
Fn API Protobuf definition 

Stories 
How to process a bundle using the Fn API 
How to send and receive data over the Fn API 
How to access side inputs, access remote references, and support user state over the Fn API 
How to report bundle processing progress over the Fn API 
How a users container is initialized/shutdown over the Fn API 
Breaking the fusion barrier: Deep splitting of Beam instruction graphs 
Optimize combiners by lifting them before the GBK 
Handling user and system metrics 
Modeling, scheduling and executing timers 
How to finalize bundles 

https://github.com/apache/beam/blob/master/model/pipeline/src/main/proto/org/apache/beam/model/pipeline/v1/beam_runner_api.proto
https://github.com/apache/beam/blob/master/model/fn-execution/src/main/proto/org/apache/beam/model/fn_execution/v1/beam_fn_api.proto
https://s.apache.org/beam-fn-api-processing-a-bundle
https://s.apache.org/beam-fn-api-send-and-receive-data
https://s.apache.org/beam-fn-state-api-and-bundle-processing
https://s.apache.org/beam-fn-api-progress-reporting
https://s.apache.org/beam-fn-api-container-contract
https://s.apache.org/beam-breaking-fusion
https://s.apache.org/beam-runner-api-combine-model
https://s.apache.org/beam-fn-api-metrics
https://s.apache.org/beam-portability-timers
https://s.apache.org/beam-finalizing-bundles


Preliminary Results 
A preliminary implementation was created to test Dataflow with the components above. Pipeline execution time 
was increased by approximately 15% when used with a pipeline which read 10 GiBs of data, followed by a 
group by key and then an identity ParDo. Pipeline execution time was measured from when the first byte was 
read to when the last byte was processed in the ParDo and did not include any VM startup overhead. Note that 
approximately 80% of the overhead came from encoding and decoding the data across the Fn Api and could 
be significantly reduced by optimizing encoding/decoding paths. Also note that this benchmark pipeline is 
atypical as user processing time was minimal while normal pipelines have non-trivial ParDos so this relative 
overhead decreases as user processing time increases. 

Benefits 
By using Docker combined with a gRPC interface, the Fn API as sketched here will deliver the following 
benefits: 

●​ Providing clean APIs clarifying and reducing the knowledge needed to get an SDK started. 
●​ Enables multi-language pipelines, allowing reuse of connectors and libraries (ML, etc) between SDKs. 
●​ Gives a portability story for the Python SDK (or any Beam SDK) on any runner supporting the Fn API: 

given a way to construct a runner-specific execution plan with embedded UDFs (the Runner API will be 
the runner-agnostic way to do this) the runner can then execute UDFs in any language-specific SDK. 

●​ Reduces the risk when upgrading or patching portions of a runner due to the reduction in coupling. 
●​ Solves dependency issues caused when user code requires an environment different than the 

harnesses. 
○​ Key for Python users for customizing the user environment. 
○​ Relevant for Java users when dependencies conflict. 
○​ Also helpful when users want to configure their runtime environment by installing additional 

libraries or including large static data files. 
 
 


	Apache Beam Fn API Overview 
	Overview 
	Components 
	API & Code References 
	Stories 
	Preliminary Results 
	Benefits 


