
Flatland-RL Visualization Specification 
Version 0.1 21 March 2019 
 

 
 
 
Scope​ 1 

References​ 1 

Interfaces​ 2 
Interface with Environment Component​ 2 

Environment Snapshot​ 2 
Data Structure​ 2 
Investigation into Existing Tools / Libraries​ 3 
Technical Graphics Considerations​ 3 

Overlay dynamic primitives over the background at each time step.​ 3 
 
 

Scope 
This doc specifies the software to meet the requirements in the Visualization requirements 
doc. 

 



References 
Visualization Requirements 
https://docs.google.com/document/d/1Y4Mw0Q6r8PEOvuOZMbxQX-pV2QKDuwbZJBvn18
mo9UU/edit# 
 
Core Spec 
https://docs.google.com/document/d/1RN162b8wSfYTBblrdE6-Wi_zSgQTvVm6ZYghWWKn
5t8/edit 
 
 

Interfaces 

Interface with Environment Component 
 

-​ Environment produces the Env Snapshot data structure (TBD) 
-​ Renderer reads the Env Snapshot 
-​ Connection between Env and Renderer, either: 

-​ Environment “invokes” the renderer in-process 
-​ Renderer “connects” to the environment 

-​ Eg Env acts as a server, Renderer as a client 
-​ Either 

-​ The Env sends a Snapshot to the renderer and waits for rendering 
-​ Or: 

-​ The Env puts snapshots into a rendering queue 
-​ The renderer blocks / waits on the queue, waiting for a new snapshot to arrive 

-​ If several snapshots are waiting, delete and skip them and just render 
the most recent 

-​ Delete the snapshot after rendering 
-​ Optionally 

-​ Render every frame / time step 
-​ Or, render frames without blocking environment 

-​ Render frames in separate process / thread 

Environment Snapshot 
 

Data Structure 
 
A definitions of the data structure is to be defined in Core requirements or Interfaces doc. 

https://docs.google.com/document/d/1Y4Mw0Q6r8PEOvuOZMbxQX-pV2QKDuwbZJBvn18mo9UU/edit#
https://docs.google.com/document/d/1Y4Mw0Q6r8PEOvuOZMbxQX-pV2QKDuwbZJBvn18mo9UU/edit#
https://docs.google.com/document/d/1RN162b8wSfYTBblrdE6-Wi_zSgQTvVm6ZYghWWKn5t8/edit
https://docs.google.com/document/d/1RN162b8wSfYTBblrdE6-Wi_zSgQTvVm6ZYghWWKn5t8/edit


 
 
 
Example only 
 
Top-level dictionary 

-​ World nd-array 
-​ Each element represents available transitions in a cell 

-​ List of agents 
-​ Agent location, orientation, movement (forward / stop / turn?) 
-​ Observation 

-​ Rectangular observation 
-​ Maybe just dimensions - width + height (ie no need for 

contents) 
-​ Can be highlighted in display as per minigrid 

-​ Tree-based observation 
-​ TBD 

 

 

 

Existing Tools / Libraries 
1.​ Pygame 

a.​ Very easy to use. Like dead simple to add sprites etc. 
(https://studywolf.wordpress.com/2015/03/06/arm-visualization-with-pygame/) 

b.​ No inbuilt support for threads/processes. Does get faster if using pypy/pysco. 
2.​ PyQt 

a.​ Somewhat simple, a little more verbose to use the different modules. 
b.​ Multi-threaded via QThread! Yay! (Doesn’t block main thread that does the 

real work), (https://nikolak.com/pyqt-threading-tutorial/) 
 
How to structure the code 
 

1.​ Define draw functions/classes for each primitive 
a.​ Primitives: Agents (Trains), Railroad, Grass, Houses etc. 

2.​ Background. Initialize the background before starting the episode. 
a.​ Static objects in the scenes, directly draw those primitives once and cache. 

 
Proposed Interfaces 

https://studywolf.wordpress.com/2015/03/06/arm-visualization-with-pygame/
https://nikolak.com/pyqt-threading-tutorial/


To-be-filled 

Technical Graphics Considerations 

Overlay dynamic primitives over the background at each time step. 
No point trying to figure out changes. Need to explicitly draw every primitive anyways (that’s 
how these renders work). 
 
 


	Flatland-RL Visualization Specification 
	Scope 
	 
	References 
	Interfaces 
	Interface with Environment Component 
	Environment Snapshot 

	Data Structure 
	 
	 

	 
	Existing Tools / Libraries 
	Technical Graphics Considerations 
	Overlay dynamic primitives over the background at each time step. 



