Flatland-RL Visualization Specification

Version 0.1 21 March 2019

Scope
References

Interfaces
Interface with Environment Component
Environment Snapshot
Data Structure
Investigation into Existing Tools / Libraries
Technical Graphics Considerations
Overlay dynamic primitives over the background at each time step.

Scope

This doc specifies the software to meet the requirements in the Visualization requirements
doc.

W W W NDNDNDND



References

Visualization Requirements
https://docs.google.com/document/d/1Y4Mw0Q6r8PEOvuOZMbxQX-pV2QKDuwbZJBvn18
mo9UU/edit#

Core Spec
https://docs.google.com/document/d/1RN162b8wSfYTBbIrdE6-Wi zSgQTvVm62ZYghWWKn
5t8/edit

Interfaces

Interface with Environment Component

- Environment produces the Env Snapshot data structure (TBD)
- Renderer reads the Env Snapshot
- Connection between Env and Renderer, either:
- Environment “invokes” the renderer in-process
- Renderer “connects” to the environment
- Eg Env acts as a server, Renderer as a client

- Either
- The Env sends a Snapshot to the renderer and waits for rendering
- Or
- The Env puts snapshots into a rendering queue
- The renderer blocks / waits on the queue, waiting for a new snapshot to arrive
- If several snapshots are waiting, delete and skip them and just render
the most recent
- Delete the snapshot after rendering
- Optionally

- Render every frame / time step
- Or, render frames without blocking environment
- Render frames in separate process / thread

Environment Snapshot

Data Structure

A definitions of the data structure is to be defined in Core requirements or Interfaces doc.


https://docs.google.com/document/d/1Y4Mw0Q6r8PEOvuOZMbxQX-pV2QKDuwbZJBvn18mo9UU/edit#
https://docs.google.com/document/d/1Y4Mw0Q6r8PEOvuOZMbxQX-pV2QKDuwbZJBvn18mo9UU/edit#
https://docs.google.com/document/d/1RN162b8wSfYTBblrdE6-Wi_zSgQTvVm6ZYghWWKn5t8/edit
https://docs.google.com/document/d/1RN162b8wSfYTBblrdE6-Wi_zSgQTvVm6ZYghWWKn5t8/edit

Example only

Top-level dictionary
- World nd-array
- Each element represents available transitions in a cell
- List of agents
- Agent location, orientation, movement (forward / stop / turn?)
- Observation
- Rectangular observation

- Maybe just dimensions - width + height (ie no need for
contents)
- Can be highlighted in display as per minigrid
- Tree-based observation
- TBD

Existing Tools / Libraries

1. Pygame
a. Very easy to use. Like dead simple to add sprites etc.

(https://studywolf.wordpress.com/2015/03/06/arm-visualization-with-pygame/)

2. PyQt
a. Somewhat simple, a little more verbose to use the different modules.

b. No inbuilt support for threads/processes. Does get faster if using pypy/pysco.

b. Multi-threaded via QThread! Yay! (Doesn’t block main thread that does the

real work), (https://nikolak.com/pyqt-threading-tutorial/)

How to structure the code

1. Define draw functions/classes for each primitive
a. Primitives: Agents (Trains), Railroad, Grass, Houses etc.
2. Background. Initialize the background before starting the episode.

a. Static objects in the scenes, directly draw those primitives once and cache.

Proposed Interfaces


https://studywolf.wordpress.com/2015/03/06/arm-visualization-with-pygame/
https://nikolak.com/pyqt-threading-tutorial/

To-be-filled

Technical Graphics Considerations

Overlay dynamic primitives over the background at each time step.

No point trying to figure out changes. Need to explicitly draw every primitive anyways (that’s
how these renders work).



	Flatland-RL Visualization Specification 
	Scope 
	 
	References 
	Interfaces 
	Interface with Environment Component 
	Environment Snapshot 

	Data Structure 
	 
	 

	 
	Existing Tools / Libraries 
	Technical Graphics Considerations 
	Overlay dynamic primitives over the background at each time step. 



