

Open Command and Control (OpenC2)
Language Description Document

Version 1.0 – Release Candidate 3
17 February 2017

FOREWORD

The Open Command and Control Forum (OpenC2 or the Forum) supports the cyber
defense community of interest by developing and promoting the adoption of the OpenC2
language, data models, prototype implementations, and reference material that addresses
the command and control of cyber defense components, technologies, and systems.

This Forum serves developers, users, and the entire cybersecurity ecosystem by providing a
set of shared resources to expand the use of standardized command and control for cyber
defense activities, to enable technology vendors building orchestration and cyber response
technologies, and to assist developers in producing response technologies that can be
readily used in coordinated responses. The goal of the Forum is to provide and open and
collaborative environment and to present its findings and artifacts to recognized standards
bodies for the standardization of the command and control language.

This document represents the outcome of collaboration between technology vendors,
government agencies, and academia on the topic of command and control for cyber
defensive measures. We gratefully acknowledge their contributions to the definition of the
OpenC2 language. As we exercise the language in reference implementations and in
real-world operations, we expect to continue to refine the language to ensure its suitability
to support machine-to-machine command and control communications in response to
cyber threats in cyber-relevant time.

Visit openc2.org for other on-line resources.

1

TABLE OF CONTENTS
FOREWORD​ 1

TABLE OF CONTENTS​ 2

1. Introduction​ 5
1.1 Purpose​ 5
1.2 Scope​ 5
1.3 Intended Audience​ 6
1.4 Document Overview​ 6

2. Background​ 7
2.1 Design Principles​ 7
2.2 OpenC2 and Deployment Environments​ 8

3. OpenC2 Language​ 10
3.1 Overview​ 10
3.2 Abstract Syntax​ 10

3.2.1 Action​ 13
3.2.2 Target​ 13
3.2.3 Actuator​ 14
3.2.4 Specifiers​ 14
3.2.5 Modifiers​ 15

3.3 Actions​ 16
3.4 Target Vocabulary​ 20
3.5 Actuator Vocabulary​ 26
3.6 Modifier Vocabulary​ 28

4. EXAMPLE OpenC2 USAGE​ 29
4.1 Actions that Control Information​ 29

4.1.1 SCAN​ 30
4.1.2 LOCATE​ 30
4.1.3 QUERY​ 30
4.1.4 REPORT​ 30
4.1.6 NOTIFY​ 30

4.2 Actions that Control Permissions​ 30
4.2.1 DENY​ 30
4.2.2 CONTAIN​ 30
4.2.3 ALLOW​ 30

4.3 Actions that Control Activities/Devices​ 30

2

4.3.1 START​ 31
4.3.2 STOP​ 31
4.3.3 RESTART​ 31
4.3.4 PAUSE​ 31
4.3.5 RESUME​ 31
4.3.6 CANCEL​ 31
4.3.7 SET​ 31
4.3.8 UPDATE​ 31
4.3.9 MOVE​ 31
4.3.10 REDIRECT​ 31
4.3.11 DELETE​ 31
4.3.12 SNAPSHOT​ 31
4.3.13 DETONATE​ 31
4.3.14 RESTORE​ 31
4.3.15 SAVE​ 31
4.3.17 THROTTLE​ 31
4.3.18 DELAY​ 31
4.3.19 SUBSTITUTE​ 31
4.3.20 COPY​ 32
4.3.21 SYNC​ 32

4.4 Sensor-Related Actions​ 32
4.4.1 DISTILL​ 32
4.4.2 AUGMENT​ 32

4.5 Effects-Based Actions​ 32
4.5.1 INVESTIGATE​ 32
4.5.2 MITIGATE​ 32
4.5.3 REMEDIATE​ 32

4.6 Response and Alert​ 32
4.6.1 RESPONSE​ 33
4.6.2 ALERT​ 33

5. Example OpenC2 Use Case​ 34

Appendix A. Example OpenC2 Commands​ 35
A.1 ALERT​ 36
A.2 ALLOW​ 36
A.3 AUGMENT​ 36
A.4 CANCEL​ 36
A.5 CONTAIN​ 36
A.6 COPY​ 36

3

A.7 DELAY​ 36
A.8 DELETE​ 36
A.9 DENY​ 36
A.10 DETONATE​ 36
A.11 DISTILL​ 36
A.12 INVESTIGATE​ 36
A.13 LOCATE​ 36
A.14 MITIGATE​ 36
A.15 MOVE​ 36
A.16 NOTIFY​ 36
A.17 PAUSE​ 37
A.18 QUERY​ 37
A.19 REDIRECT​ 37
A.20 REMEDIATE​ 37
A.21 REPORT​ 37
A.22 RESPONSE​ 37
A.23 RESTART​ 37
A.24 RESTORE​ 37
A.25 RESUME​ 37
A.26 SAVE​ 37
A.27 SCAN​ 37
A.28 SET​ 37
A.29 SNAPSHOT​ 37
A.30 START​ 37
A.31 STOP​ 37
A.32 SUBSTITUTE​ 37
A.33 SYNC​ 38
A.34 THROTTLE​ 38
A.35 UPDATE​ 38

4

1. Introduction
Cyberattacks are increasingly more sophisticated, less expensive to execute, dynamic, and
automated. Current cyber defense products are typically integrated in a unique or
proprietary manner and statically configured. As a result, upgrading or otherwise modifying
tightly integrated, proprietary cyber defense’s functional blocks is resource intensive;
cannot be realized within a cyber-relevant timeframe; and the upgrades may degrade the
overall performance of the system.

Future cyber defenses against current and pending attacks require the integration of new
or upgraded functional capabilities, the coordination of responses across domains,
synchronization of response mechanisms, and deployment of automated actions in cyber
relevant time.

Standardization of the languages, including lexicons, syntaxes, and encodings, used within
the interfaces and protocols necessary for machine-to-machine command and control
communications in cyber relevant time will enable cyber defense system flexibility,
interoperability, and responsiveness in cyber relevant time.

1.1 Purpose
The purpose of the Open Command and Control (OpenC2) Language Description
Document is to define a lexicon language and semantics at a level of abstraction that will
enable the coordination and execution of command and control of cyber defense
components between and within networks. It is expected that the OpenC2 language will
define profiles (i.e.., applicable commands, applicable values) by community groups for
specific cyber defense functions such as Software Defined Networking, Firewall, routing.

1.2 Scope
The scope of this document is to create a lexicon of actions and define the semantics,
syntax and other aspects of a language that will couple an action with the target of the
actions, and the entities that execute the actions. The document also defines an extensible
syntax to accommodate attributes that further specify the targets, and modify actions to
support a wide range of operational environments.

Other aspects of OpenC2, such as implementation considerations, further refinement of
the lexicon to accommodate specific cyber defense functions, encoding of commands for
machine to machine communications and reference implementations will be addressed in
other artifacts. These other efforts will be consistent with this language description.

5

The definition of a language such as OpenC2 is necessary but insufficient to enable future
cyber defenses. OpenC2 commands can be carried within any number of constructs (e.g.,
STIX, workflows, playbooks, API’s). In addition, OpenC2 is designed to be flexible, agnostic
of external protocols that provide services such as transport, authentication, key
management and other services. Cyber defense implementations must consider and will
require other protocols and security services.

1.3 Intended Audience
This OpenC2 Language Description Document is intended for organizations investigating
the implementation of automated pre-approved cyber defensive measures as well as
academia and industry partners involved with the development and integration of security
orchestration, network components or services, endpoint security applications, and
security services for cyber defenses.

1.4 Document Overview
Section 1, Introduction, describes the impetus for the OpenC2 language and lays out the
purpose, scope, and intended audience of the document.

Section 2, Background, describes the design principles for the language and how the
language can be contextualized for different operating environments.

Section 3, OpenC2 Language, describes the abstract syntax and the basic building blocks of
the language. It also further specifies the vocabulary for actions, universal modifiers, action
specific modifiers and a default namespace for targets and target specifiers..

Section 4, Example OpenC2 Usage, provides examples of OpenC2 command constructs. For
each action, the supported targets, actuators, and action specific modifiers are identified
and example usages are provided.

Section 5, Example OpenC2 Use Case, depicts an example use case for mitigating an evil
domain. The use case shows the OpenC2 commands that could be used to mitigate the
attacks or vulnerabilities and where they could be applied.

Appendix A, Example OpenC2 Commands, contains example OpenC2 commands organized
in tables by OpenC2 action. These example commands were based on use cases provided
by government agencies, critical infrastructure, industry (e.g., security orchestrator,
actuator, and sensor) and academia.

6

2. Background

2.1 Design Principles
OpenC2 can be implemented in a variety of systems to perform the secure delivery and
management of command and control messages in a context-specific way. OpenC2
commands are vendor neutral and message fabric agnostic, thus can be incorporated in
different architectures and environments (such as connection oriented, connectionless,
pub-sub, hub and spoke, etc.).

OpenC2 was designed to have a concise set of commands are extensible in order to
provide context specific details. Conciseness ensures minimal overhead to meet possible
latency and overhead constraints while extensions enable greater utility and flexibility.

There is an underlying assumption that issuing OpenC2 commands are event-driven and
that an action is warranted. OpenC2 was designed to focus on the actions that are to be
executed in order to thwart an attack, mitigate some vulnerability or otherwise address a
threat. The exchange of indicators, rationale for the decision to act and/or threat
information sharing are beyond the scope of OpenC2 and left to other standards such as
STIX, TAXII etc.

The actual performance and efficacy of OpenC2 will be implementation-specific and will
require the incorporation of other technologies. The OpenC2 design principles include the
following:

●​ Support cyber relevant response time for coordination and response actions.
●​ Be infrastructure, architecture, and vendor agnostic.
●​ Support multiple levels of abstraction, necessary to permit the contextualization of

commands for a wide variety of operating environments.
●​ Permit commands to be invoked that are either tasking/response actions or

notifications.
○​ Tasking/response actions result in a state change.
○​ Notifications require supporting analytics/decision processes.

●​ Provide an extensible syntax to accommodate different types of actions, targets,
and actuators (e.g., sensor, endpoint, network device, human) at varying levels of
specificity. .

●​ Ensure the OpenC2 command is independent of a message construct that provides
transport, identifies priority/ quality of service, and supports security attributes.

7

By design, OpenC2 is dependent upon but agnostic of the transport infrastructure and
message fabric. Confidentiality, integrity, availability and authentication must be identified
and provisioned by the message fabric.

Traditional command and control implementations utilize complete, self-standing
constructs. OpenC2 decouples the actions from the targets of the actions and from the
recipients of the commands. An OpenC2 command is not complete until an action is paired
with a target, providing the command context for the action. This enables the OpenC2
language to be more concise, yet still support the entire C2 space. This characteristic of
OpenC2 also permits a more flexible and extensible approach to accommodate future
technologies and varying network environments.

2.2 OpenC2 and Deployment Environments
OpenC2 is defined at a level of abstraction such that an inter-domain tasking or
coordination effort can be described without requiring in depth knowledge of the recipient
network’s components, but through the use of specifiers and modifiers, enough detail can
be appended to carry out specific tasks on particular devices to support intra-domain
command and control.

This level of abstraction permits end to end applicability of OpenC2. As depicted in Figure
2-1, an OpenC2 command is sent to enable coordination or send a high level tasking from
the peer or upper tier enclave. An OpenC2 command received by an enclave will trigger
events within the enclave to annotate the command with context specific information so
that specific devices within the enclave can respond appropriately. This allows the enclave
to take advantage of this context-specific knowledge to interpret and appropriately execute
OpenC2 commands .

Each network contextualizes an OpenC2 action for the specific sensors and actuators
within its environment so it can further specify the command to reflect the
implementations of which it is capable. Context-specific modifiers provide an ability to
further specify the action while enabling the set of actions to remain tightly constrained.
This minimizes the overhead, permits further contextualization of the OpenC2 commands
for specific environments, and thereby enables flexibility and extensibility.

8

Figure 2-1. OpenC2 Deployment Environments

For example, an organization may have executed a series of actions to protect against a
particular attack that was signaled by an external indicator (such as a STIX message). In
order to elicit a consistent response across an organization (whether hierarchical or peer to
peer), a complex course of action can be constructed and shared. The use of standardized
OpenC2 commands will be more precise and more quickly actionable than a set of
recommended steps within a text document (e.g., flash), which must be parsed, analyzed,
and interpreted, prior to execution. Standardizing OpenC2 commands helps to ensure a
more uniform response at enterprises/enclaves that reflects enterprise-wide level
decisions.

9

3. OpenC2 Language

3.1 Overview
The OpenC2 language is designed at a level of abstraction high enough such that it enables
persistence as technologies advance and is implementation agnostic, but enough precision
so that the need for specifiers and modifiers is limited.

3.2 Abstract Syntax
Conceptually, an OpenC2 command has the following form:

(
​ ACTION = <ACTION_TYPE>,
​ TARGET (
​ ​ type = <data-model>:<TARGET_TYPE>,
​ ​ <target-specifier>
​),
​ ACTUATOR (
​ ​ type = <data-model>:<ACTUATOR_TYPE>,
​ ​ <actuator-specifier>
​),
​ MODIFIERS (
​ ​ <list-of-modifiers>
​)
)

Fields denoted with angle brackets ("<>") are replaced with the appropriate details. Some of
the fields are considered optional. The table below describes these fields semantically and
whether they are required, optional or ignored in certain situations. Actual encoding will
leverage pre-existing conventions and notations such as XML, JSON, TLV or others. .

The following table contains the description of the fields that can be contained in an
OpenC2 command.

10

Table 3-1. OpenC2 Command Field Descriptions

Field Description

ACTION Required. The task or activity to be performed (i.e.,
the ‘verb’).

data-model Required. The data model for the TARGET.

TARGET Required. The object of the action. The ACTION is
performed on the TARGET.

type Required. The TARGET type will be defined within the
context of a namespace.

target-specifier Optional. The specifier further describes a specific
target, a list of targets, or a class of targets.

ACTUATOR Optional. The subject of the action. The ACTUATOR
executes the ACTION on the TARGET.

type Required if the actuator is included, otherwise not
applicable. The ACTUATOR type will be defined
within the context of a namespace.

data-model Required if the actuator is included, otherwise not
applicable. The data model for the ACTUATOR.

actuator-specifier Optional if the actuator is included, otherwise not
applicable. The specifier further describes a specific
actuator, a list of actuators, or a class of actuators.

MODIFIERS (<list-of-modifiers>) Optional. Provide additional information about the
action such as date/time, periodicity, duration, and
location.

There are cases where an ACTION and TARGET are sufficient to complete the command,
especially in the case of inter-domain commands where the method or approach to
complete or execute the action can be determined within the receiving domain/enclave.

The majority of commands within an enclave will have an ACTION, TARGET and ACTUATOR.
Inclusion of the ACTUATOR provides additional context for the command as a whole and
enables precision. .

11

Specifiers for TARGETs and ACTUATORs are optional and can be used to provide context
specific information that could be used to reflect the local environment, policies, and
operational conditions within an enterprise/enclave. Specifiers can call out a specific
target/actuator, a list of targets/actuators, or a class of targets/actuators.

Modifiers to the ACTION are optional and are used to provide effect based context to the
ACTION. Modifiers are further discussed in Section 3.2.5.

Table 3-2 illustrates the use of specifiers and modifiers to extend the range of OpenC2
commands to cover the higher level ‘strategic’ commands to the unambiguous
enclave-specific use case. This provides greater flexibility to the language and allows the
OpenC2 actions to be further contextualized for the mission environment. The table below
provides some examples of the different levels of specificity achievable in an OpenC2
command.

Table 3-2. OpenC2 Syntax Flexibility Examples

Description Action Target Actuator Modifier

Target-Specifier Actuator-Specifier

Block traffic to/from
specific IP address(es)
[effects-based, no
actuator specified];
suitable for
inter-domain
coordination

DENY Network Connection

Source and/or
Destination IP
Address(es)

Block traffic at all
network devices
[specify actuator class];
suitable for
inter-domain
coordination or as a
command to an
orchestration engine
which further
contextualizes to the
enclave’s environment

DENY Network Connection Network (any
devices)

Source and/or
Destination IP
Address(es)

Block traffic at network
routers [specify type of

DENY Network Connection Network.router

12

network device
actuator]; suitable
within an enclave

Source and/or
Destination IP
Address

(optional)

Block traffic at specific
network router; [specify
identity of network
router]; suitable within
an enclave

DENY Network Connection Network.router

Source and/or
Destination IP
Address

Router identity

Block access to bad
external IP by null
routing; [specify
method of performing
action]; suitable within
an enclave

DENY Network Connection Network.router Method=
blackhole

Source and/or
Destination IP
Address

(optional)

3.2.1 Action
All OpenC2 commands start with an ACTION which indicates the type of command to
perform such as gather and convey information, control activities and devices, and control
permissions and access. The range of options and potential impact on the information
system associated with a particular ACTION is a function of the ACTUATOR. For cases that
involve multiple options for an ACTION, modifiers may be used.

Refer to Section 3.3 for the list of ACTIONs and their definitions and usage.

3.2.2 Target
All OpenC2 commands include a TARGET. The TARGET is the object of the ACTION (or
alternatively, the ACTION is performed on the TARGET). Targets include objects such as
network connections, URLs, hashes, IP addresses, files, processes, fully qualified domain
names etc. .

13

3.2.3 Actuator
An ACTUATOR is the entity that puts command and control into motion or action. The 1

ACTUATOR is the subject of the ACTION which performs the ACTION on the TARGET. There
are varying levels of abstraction and functionality for an ACTUATOR ranging from a specific
sensor to an entire system or even system of systems.

The source of a command may need to communicate an action that must be taken against
a target, but will not necessarily have knowledge of the cyber defense technologies
deployed in other enclaves so the inclusion of an actuator is optional within an OpenC2
command. As a command is propagated through the system and context specific
information is gained, the command can appended with an actuator and appropriate
specifiers.

There will be only one ACTUATOR type per OpenC2 command. The actuator namespace is
specified in the OpenC2 profiles. .

3.2.4 Specifiers
“Specifiers” are used to identify specific individual or groups of targets or actuators. Table
3-3 illustrates how the commands are appended with specifiers as context specific details
become available. The actuator specifiers presented in Table 3-3 are for illustrative
purposes. The actual specifiers are defined in the appropriate actuator profiles.

Table 3-3. Example Usage of Specifiers

Description Action Target Actuator Modifier

Target-Specifier Actuator-Specifier

Block malicious URL DENY URI/URL

Value Condition
= Equals

Quarantine Artifact
with particular byte
string

QUARANTINE Artifact

Condition =
Contains

1 Some academic circles model all cyber defense components as sensors and/or actuators. It is
acknowledged that OpenC2 will be used for C2 of sensors as well, but in the interest of being concise
within this document, actuators encompass sensors.

14

Block access to
external IP address by
null routing at specific
network routers

DENY Network
Connection

Network router

Condition =
Contains

Manufacturer,
Model, Serial
Number Value =
123

3.2.5 Modifiers
“Modifiers” provide additional precision about the action such as time, periodicity, duration,
or other details on what is to be done. Modifiers can denote the when, where, and how
aspects of an action. The modifier can also be used to convey the need for
acknowledgement or additional status information about the execution of an action.
Modifiers are similar to specifiers in that they can provide additional context specific
details, and are intended to provide additional details for action/actuator pairs. A modifier
may be “actuator-specific”, “action-specific”, or “universal” depending on the applicability of
the modifier within the language.

Actuator-specific modifiers are described in Actuator Profiles. Action-specific are described
in Section 4. Universal modifiers are described in the following table.

Table 3-4. Example Usage of Modifiers

Description Action Target Actuator Modifier

Target-Specifier Actuator-Specifier

Shutdown a system,
immediate

STOP Device endpoint method =
immediate

Device Object
Type

(optional)

Start Process with Delay START Process endpoint Delay =
duration

Process Object
Type

(optional)

Quarantine a device CONTAIN Device network where
(network

Device Object
Type

(optional)

15

segment,
vlan)

Block access to
suspicious external IP
address by redirecting
external DNS queries to
an internal DNS server

DENY Network
Connection

DNS Server method =
sinkhole

Network
Connection
Object Type

3.3 Actions
This section defines the set of OpenC2 actions grouped by their general activity. The
following table summarizes the definition of the OpenC2 actions. Subsequent sections will
identify the appropriate targets for each action and the appropriate actuators for the
action target pair. Further details will be defined in the actuator profiles. .

●​ Actions that Control Information: ​
These actions are used to gather information needed to determine the current state
or enhance cyber situational awareness. These actions typically do not impact the
state of the target and are normally not detectable by external observers.

●​ Actions that Control Permissions:​
These actions are used to control permissions and manage accesses.

●​ Actions that Control Activities/Devices:​
These actions are used to control the state or the activity of a system, a process, a
connection, a host, or a device (e.g., endpoint, sensor, actuator). The actions are
used to execute tasks, adjust configurations, set and update parameters, and
modify attributes.

●​ Sensor-Related Actions:​
These actions are used to control the activities of a sensor in terms of how to collect
and provide the sensor data.

●​ Effects-Based Actions:​
Effects-based actions are at a higher level of abstraction for purposes of
communicating a desired impact rather than a command to execute specific tasks
within an enclave. This level of abstraction enables coordinated actions between
enclaves, while permitting a local enclave to optimize its workflow for its specific
environment.​
​
Implementation of an effects-based action requires that the recipient enclave has a

16

decision making capability because an effects-based action permits multiple
possible responses.

●​ Response and Alert: ​
RESPONSE is used to provide data requested as a result of an action. The RESPONSE
message will contain the requested data and have a reference to the action that
initiated the response. ALERT is used to signal the occurrence of an event or error. It
is an unsolicited message that does not reference a previously issued action.

Table 3-5. Summary of Action Definitions

Actions that Control Information

SCAN The SCAN action is the systematic examination of some
aspect of the entity or its environment in order to obtain
information.

LOCATE The LOCATE action is used to find an object either
physically, logically, functionally, or by organization. This
action enables one to tell where in the system an event
or trigger occurred.

QUERY The QUERY action initiates a single request for
information.

REPORT The REPORT action tasks an entity to provide
information to a designated recipient of the information.

NOTIFY The NOTIFY action is used to set an entity's alerting
preferences.

Actions that Control Permissions

DENY The DENY action is used to prevent a certain event or
action from completion, such as preventing a flow from
reaching a destination (e.g., block) or preventing access.

CONTAIN The CONTAIN action stipulates the isolation of a file or
process or entity such that it cannot modify or access
assets or processes that support the business and/or
operations of the enclave.

ALLOW The ALLOW action permits the access to or execution of
a target.

17

http://drive.google.com/open?id=17RFbUa_MQziZkG0eCaaYrhrTl_3sL24Zh5sUhm5796I
http://drive.google.com/open?id=1s43RwCeTAl6kCAnz5xqPb9m08S1L52_lXjjgucDG-lo
http://drive.google.com/open?id=122pRSwWFIRq4jMgygaT9-FAXj4tFPamniVlpK-L-sp0
http://drive.google.com/open?id=1jh476aAuT3aCpytmEQtMNG499MGuSEDq0U-pzRUtiPg
http://drive.google.com/open?id=1baLlEJRNe8OhOQ1n7KRHC5WifQKXnOfqUPg_xhCPWf0
http://drive.google.com/open?id=1gwsoizvItuNQTmLKqVC9xTWX2IIKuiUj3njiyVP2Z-E
http://drive.google.com/open?id=1wwUWzhxocl_J44WO-mERPjZvkE6mCOVPJYRZX29Di6M
http://drive.google.com/open?id=1fblcDJLpKe_7iOb3Jvm0QvJwd7npb9w4q88G0jFrS24

Actions that Control Activities/Devices

START The START action initiates a process, application, system
or some other activity.

STOP The STOP action halts a system or ends an activity.

RESTART The RESTART action conducts a STOP of a system or an
activity followed by a START of a system or an activity.

PAUSE The PAUSE action ceases a system or activity while
maintaining state.

RESUME The RESUME action starts a system or activity from a
paused state.

CANCEL The CANCEL action invalidates a previously issued
action.

SET The SET action changes a value, configuration, or state of
a managed entity within an IT system.

UPDATE The UPDATE action instructs the component to retrieve,
install, process, and operate in accordance with a
software update, reconfiguration, or some other update.

MOVE The MOVE action changes the location of a file, subnet,
network, or, process.

REDIRECT The REDIRECT action changes the flow of traffic to a
particular destination other than its original intended
destination.

DELETE The DELETE action removes data and files.

SNAPSHOT The SNAPSHOT action records and stores the state of a
target at an instant in time.

DETONATE The DETONATE action executes and observes the
behavior of a target (e.g., file, hyperlink) in a manner that
is isolated from assets that support the business or
operations of the enclave.

RESTORE The RESTORE action deletes and/or replaces files,
settings, or attributes to return the system to an

18

http://drive.google.com/open?id=1RAK1_0wmz8ysqBggjn8d0gDGSJkww65KZGvjMAaaVoo
http://drive.google.com/open?id=1Kv7ajRR6DwjP3x8Oj0rGbatgtDcw6r2dvdtceOuXGOI
http://drive.google.com/open?id=14NrV6K5jOr4BFiOMZO0-fAkniLv3oOy2rWkZa_XZbrg
http://drive.google.com/open?id=11ce_FXuNWya3QODWZmFrkUt7BRIQW5iv4uSbnyU9Ggc
http://drive.google.com/open?id=17OQaqTK46T3mefzx-gww3ppIJ-SAvT-aCIj3GhwoJdQ
http://drive.google.com/open?id=1CQQPHdcBzI_ei3cvx5UiOQ18lRyWng9xTZg9PSnM5Uo
http://drive.google.com/open?id=1nrcScIi05IXn9AF5NBY4NUvssMDVpyDVTPvMgZW5Gfs
http://drive.google.com/open?id=1BN7VxyS8oGWOGgPbiAOVn2OsD_utaa7uMkQeaAkqSrc
http://drive.google.com/open?id=123w1EWa0WXctBUTbH64IwZdPGgrfb9j6ehdzC9sp1T0
http://drive.google.com/open?id=1RdOl8h7AawCdkKpTQ3pau5BmMC0czmavdFyCcDfSBok
http://drive.google.com/open?id=1ccgVYgBpzAOTFoLigxVzDXOAE7IynbgEGMeGUitLSAA
http://drive.google.com/open?id=1ql5nytQPLUMfrI8hF9pmYqem7WDHr040Lr8_nE11N_o
http://drive.google.com/open?id=1f4HQwi0kzjbdU9radL7m5FK9hEY5l5AmAjAO0jTQRZM
http://drive.google.com/open?id=1iNxdcIRMvQLw4y95PV563eLN9FaPMNIDZ3vbERwJ--g

identical or similar known state.

SAVE The SAVE action commits data or system state to
memory.

THROTTLE The THROTTLE action adjusts the throughput of a data
flow.

DELAY The DELAY action stops or holds up an activity or data
transmittal.

SUBSTITUTE The SUBSTITUTE action replaces all or part of the data,
content or payload in the least detectable manner.

COPY The COPY action duplicates a file or data flow.

SYNC The SYNC action synchronizes a sensor or actuator with
other system components.

Sensor-Related Actions

DISTILL The DISTILL action tasks the sensor to send a summary
or abstraction of the sensing information instead of the
raw data feed.

AUGMENT The AUGMENT action tasks the sensor to do a level of
preprocessing or sense making prior to sending the
sensor data.

Effects-Based Actions

INVESTIGATE The INVESTIGATE action tasks the recipient enclave to
aggregate and report information as it pertains to an
anomaly.

MITIGATE The MITIGATE action tasks the recipient enclave to
circumvent the problem without necessarily eliminating
the vulnerability or attack point.
Mitigate implies that the impacts to the enclave’s
operations should be minimized while addressing the
issue.

REMEDIATE The REMEDIATE action tasks the recipient enclave to
eliminate the vulnerability or attack point.

19

http://drive.google.com/open?id=1pw1QqnEiABmjuruMNU7KZ916elkNaF7xh0jBbgvm8n4
http://drive.google.com/open?id=1UyTEdIer0vOywgeuOvlyDADMPCFrufkTeiUX_KzgnKw
http://drive.google.com/open?id=1MrTa7P3KIR8r8lNGy1XjBjQqnD6q5NioD4ljdsPZcGY
http://drive.google.com/open?id=1mtqf98aIMJH1SgbcDsRm6HQcLf1sB27fSZ6CFmy9Iuc
http://drive.google.com/open?id=1GS8S_0hVNf91A-rJvJDyzbN_0FrQ1DT6bILgoyYByDU
http://drive.google.com/open?id=1xA7CQ4L5itc5IaM0OYhh3o82xS0QIuDTFOvk2IUgywI
http://drive.google.com/open?id=1KH4iSnQGOObnTbsBu3fe7mLKPzFdtT7Cjtp_Aw8PHls
http://drive.google.com/open?id=1MyKWlZNCYAz4bXHBGEsI60Da_j7UeUTqcwn4qwrEsGM
http://drive.google.com/open?id=1aNY6OyR8VnWWXN2IsotyXhW0UBu0BB4IvlZ7rLRzjxc
http://drive.google.com/open?id=1ZDWAQcg8FhISPok-MJx8TRof-dZ3cSulaF4baTS3qfE
http://drive.google.com/open?id=1yKQMY8TyBEZ-YrzwivGv4C00qWg4GFuezdcpzTGJE_Q

Remediate implies that addressing the issue is
paramount.

Response and Alert

RESPONSE RESPONSE is used to provide any data requested as a
result of an action. RESPONSE can be used to signal the
acknowledgement of an action, provide the status of an
action along with additional information related to the
requested action, or signal the completion of the action.
The recipient of the RESPONSE can be the original
requester of the action or to another recipient(s)
designated in the modifier of the action.

ALERT ALERT is used to signal the occurrence of an event.

3.4 Target Vocabulary
The TARGET is the object of the ACTION (or alternatively, the ACTION is performed on the
TARGET). OpenC2 defines a default TARGET Data Model to support all of the actions. It is
derived largely on the STIX Cyber Observables v2.x.

In addition to the default TARGET Data Model, the OpenC2 syntax can support any other
data model. To differentiate alternative data models, a data model prefix is used to qualify
the target type. The default target data model will prefix "openc2:" to the target type. The
implementer will need to supply a unique data model prefix for non-standard target types.
It is the responsibility of the implementer to ensure that there are no namespace collisions
when using alternative data models. Refer to the following table for a summary of the
OpenC2 TARGET Data Models.

Table 3-6. Target Data Model

Type Description Options

data-model Used to uniquely identify a set of target
types so there is no ambiguity; defines
the context in which target types are
defined.

Choice of:
●​ openc2
●​ <external-ref>

20

http://drive.google.com/open?id=1CJNF2Ld5bZAQBJo8uEoUp8_7L-2bkBN794B_oPrEhTM
http://drive.google.com/open?id=1EyxUsd5xwew9UpP13d3kRRt7LHpOi1B9v-pCoJX0r4U

Targets include objects such as network connections, URLs, hashes, IP addresses, files,
processes, and domains. Refer to the following table for a summary of the supported
OpenC2 TARGETs in the default TARGET Data Model.

Table 3-7. Summary of Supported Targets

Target Type Description Target Specifier

openc2:artifact The Artifact Object
permits capturing
an array of bytes
(8-bits), as a
base64-encoded
string or linking to
a file-like payload.

mime_type : string,
payload_bin : binary,
url : string,
hashes : hashes-type

openc2:command The Command
Object represents
and OpenC2
command.

id : command-ref

openc2:device The Device Object
represents the
properties of a
hardware device.

description: string,
device_type: string,
manufacturer: string,
model : string,
serial_number : string,
firmware_version : string

openc2:directory The Directory
Object represents
the properties
common to a file
system directory.

path : string,
path_enc : string,
created : timestamp,
modified : timestamp,
accessed : timestamp,
contains_refs : list of type object-ref

openc2:disk The Disk Object
represents a disk
drive.

disk_name : string,
disk_size : integer,
free_space : integer,
partition_list : list of type disk-partition
type : string

21

openc2:disk-partition The Disk Partition
Object represents
a single partition
of a disk drive.

created : timestamp,
device_name : string,
mount_point : string,
partition_id : string,
partition_length : integer,
partition_offset : integer,
space_left : integer,
space_used : integer,
total_space : integer,
type : string

openc2:domain-name The Domain Name
represents the
properties of a
network domain
name.

value : string,
resolves_to_refs : list of type object-ref

openc2:email-addr The Email Address
Object represents
a single email
address.

value : string,
display_name : string,
belongs_to_ref : object-ref

openc2:email-message The Email Message
Object represents
an instance of an
email message,
corresponding to
the internet
message format
described in RFC
5322 and related
RFCs.

is_multipart : boolean,
date : timestamp,
content_type : string,
from_ref : object-ref,
sender_ref : object-ref,
to_refs : list of type object-ref,
cc_refs : list of type object-ref,
bcc_refs : list of type object-ref,
subject : string,
received_lines : list of type string,
additional_header_fields : dictionary,
body : string,
body_multipart : list of type
mime-part-type,
raw_email_ref : object-ref

openc2:file The File Object
represents the
properties of a file.

extensions : dictionary,
hashes : hashes-type,
size : integer,
name : string,
name_enc : string,

22

magic_number_hex : hex,
mime_type : string,
created : timestamp,
modified : timestamp,
accessed : timestamp,
parent_directory_ref : object-ref,
is_encrypted : boolean,
encryption_algorithm : open-vocab,
decryption_key : string,
contains_refs : list of type object-ref,
content_ref: object-ref

openc2:ipv4-addr The IPv4 Address
Object represents
one or more IPv4
addresses
expressed using
CIDR notation.

value : string,
resolves_to_refs : list of type object-ref,
belongs_to_refs : list of type object-ref

openc2:ipv6-addr The IPv6 Address
Object represents
one or more IPv6
addresses
expressed using
CIDR notation.

value : string,
resolves_to_refs : list of type object-ref,
belongs_to_refs : list of type object-ref

openc2:mac-addr The MAC Address
Object represents
a single Media
Access Control
(MAC) address.

value : string

openc2:memory The Memory
Object represents
memory objects.

hashes : list of type string,
name : string,
memory_source : string,
region_size : integer,
block_type : string,
region_start_address : string,
region_end_address : string,
extracted_features : string

openc2:network-traffic The Network
Traffic Object

extensions : dictionary,
start : timestamp,

23

represents
arbitrary network
traffic that
originates from a
source and is
addressed to a
destination.

end : timestamp,
is_active : boolean,
src_ref : object-ref,
dst_ref : object-ref,
src_port : integer,
dst_port : integer,
protocols : list of type string,
src_byte_count : integer,
dst_byte_count : integer,
src_packets : integer,
dst_packets : integer,
ipfix : dictionary,
src_payload_ref : object-ref,
dst_payload_ref : object-ref,
encapsulates_refs : list of type
object-ref,
encapsulated_by_ref : object-ref

openc2:openc2 The OpenC2
Object is a subset
of the Artifact
Object that
represents an
Actuator's OpenC2
supported
capabilities.

value : string,
attributes : list of type string,
search : string

openc2:process The Process
Object represents
common
properties of an
instance of a
computer
program as
executed on an
operating system.

extensions : dictionary,
is_hidden : boolean,
pid : integer,
name : string,
created : timestamp,
cwd : string,
arguments : list of type string,
encironment_variables : dictionary,
opened_connection_refs : list of type
object-ref,
creator_user_ref : object-ref,
binary_ref : object-ref,
parent_ref : object-ref,
child_refs : list of type object-ref

openc2:software The Software name : string,

24

Object represents
high-level
properties
associated with
software, including
software products.

cpe : string,
language : string,
vendor : string,
version : string

openc2:url The URL Object
represents the
properties of a
uniform resource
locator (URL).

value : string

openc2:user-account The User Account
Object represents
an instance of any
type of user
account, including
but not limited to
operating system,
device, messaging
service, and social
media platform
accounts.

extensions : dictionary,
user_id : string,
account_login : string,
account_type : open-vocab,
display_name : string,
is_service_account : boolean,
is_privileged : boolean,
can_escalate_privs : boolean,
is_disabled : boolean,
account_created : timestamp,
account_expires : timestamp,
password_last_changed : timestamp,
account_first_login : timestamp,
account_last_login : timestamp

openc2:user-session The User Session
Object represents
a user session.

effective_group : string,
effective_group_id : string,
effective_user : string,
effective_user_id : string,
login_time : timestamp,
logout_time : timestamp

openc2:volume The Volume Object
represents a
generic drive
volume.

name : string,
device_path : string,
file_system_type : string,
total_allocation_units : integer,
sectors_per_allocation_unit : integer,
bytes_per_sector : integer,
actual_available_allocation_units :
integer,

25

creation_time : timestamp,
file_system_flag_list : list of type string,
serial_number : string

openc2:windows-registry-
key

The Registry Key
Object represents
the properties of a
Windows registry
key.

key : string,
values : list of type
windows-registry-value-type,
modified : timestamp,
creator_user_ref : object-ref,
number_of_subkeys : integer

openc2:x509-certificate The X509
Certificate Object
represents the
properties of an
X.509 certificate,
as defined by ITU
recommendation
X.509.

is_self_signed : boolean,
hashes : hashes-type,
version : string,
serial_number : string,
signature_algorithm : string,
issuer : string,
validity_not_before : timestamp,
validity_not_after : timestamp,
subject : string,
subject_public_key_algorithm : string,
subject_public_key_modulus : string,
subject_public_key_exponent : integer,
x509_v3_extensions :
x509-v3-extensions-type

3.5 Actuator Vocabulary
An ACTUATOR is the entity that puts command and control into motion or action. The
ACTUATOR executes the ACTION on the TARGET. The ACTUATOR data model is defined in
one or more actuator profiles where an actuator profile is a document that defines actions
that are mandatory to implement, optional and the appropriate actuator specifiers and the
actuator specific modifiers. The data model identifies which actuator profile is being
referenced. The actuator profiles referenced in this document are for illustrative
purposes.

In addition to the default ACTUATOR Data Model, the OpenC2 syntax can support any other
data model. To differentiate alternative data models, a data model prefix is used to qualify
the actuator type. The default actuator data model will prefix "openc2:" to the actuator

26

type. The implementer will need to supply a unique data model prefix for non-standard
actuator types. It is the responsibility of the implementer to ensure that there are no
namespace collisions when using alternative data models. Refer to the following table for a
summary of the OpenC2 ACTUATOR Data Models.

Table 3-8. Actuator Data Model

Type Description Options

data-model Used to uniquely identify a set of
actuator types so there is no
ambiguity; defines the context in which
target types are defined.

Choice of:
●​ openc2
●​ <external-ref>
●​

Table 3-9. List of Functional Actuators???

Actuator Type Description

endpoint Endpoint Device

endpoint-workstation

endpoint-server

network Network Platform

network-firewall

network-router

network-proxy

network-sensor

network-hips

network-sense-making

process Services/Processes

process-anti-virus-scanner

process-aaa-service

27

process-virtualization-service

process-sandbox

process-email-service

process-directory-service

process-remediation-service

process-location-service

3.6 Modifier Vocabulary
Modifiers provide additional information about the action such as time, periodicity,
duration, and location. Modifiers can denote the when, where, and how aspects of an
action. The modifier can also be used to convey the need for additional status information
about the execution of an action such as a response is required. The requested
status/information will be carried in a RESPONSE. Refer to Section 4.6.

Modifiers are similar to specifiers in that they can provide additional context specific details
for an action. Modifiers that are applicable to any action are referred to as ‘universal
modifiers’ and are presented in table 3-10. Modifiers that are applicable to a particular
action , regardless of the actuator are referred to as , ‘Action-specific’ and are are
identified in the sections detailing out each action. Modifiers that are only applicable to an
action for a particular actuator are referred to as ‘Actuator Specific’ and are defined within
the actuator profiles.

The following table lists the set of universal modifiers that are applicable to all types of
actions.

Table 3-10. Summary of Universal Modifiers

Modifier Type Description Target
Applicability

context string A reference that provides
context for the action.

All

datetime date-time (RFC 3339) The specific date/time to
initiate the action.

All

28

delay duration (RFC 3339) The time to wait before
performing the action.

All

duration duration (RFC 3339) The period of time that
an action is valid.

All

id command_id The unique identifier for
the action.

All

response ack, status Indicate the type of
response required for the
action.

All

respond-to string The location where the
response should be sent.

All

4. EXAMPLE OpenC2 USAGE
This section provides examples of OpenC2 commands that correspond to each OpenC2
action and its applicable targets. This section also defines any action specific modifiers. The
purpose of this section is to provide sample commands that are consistent with the syntax
defined in this document and to illustrate the flexibility of the OpenC2 language. Additional
examples are presented in in Appendix A.

4.1 Actions that Control Information
These actions are used to gather information needed to further determine courses of
action or assess the effectiveness of courses of action. These actions can be used to
support data enrichment use cases and maintain situational awareness. These actions
typically do not impact the state of the target and are normally not detectable by external
observers.

29

4.1.1 SCAN

4.1.2 LOCATE

4.1.3 QUERY

4.1.4 REPORT

4.1.5 NOTIFY

4.2 Actions that Control Permissions
These actions are used to control permissions and accesses.

4.2.1 DENY

4.2.2 CONTAIN

4.2.3 ALLOW

4.3 Actions that Control Activities/Devices
These actions are used to execute some task, adjust configurations, set and update
parameters etc. These actions typically change the state of the system.

30

http://drive.google.com/open?id=17RFbUa_MQziZkG0eCaaYrhrTl_3sL24Zh5sUhm5796I
http://drive.google.com/open?id=1s43RwCeTAl6kCAnz5xqPb9m08S1L52_lXjjgucDG-lo
http://drive.google.com/open?id=122pRSwWFIRq4jMgygaT9-FAXj4tFPamniVlpK-L-sp0
http://drive.google.com/open?id=1jh476aAuT3aCpytmEQtMNG499MGuSEDq0U-pzRUtiPg
http://drive.google.com/open?id=1baLlEJRNe8OhOQ1n7KRHC5WifQKXnOfqUPg_xhCPWf0
http://drive.google.com/open?id=1gwsoizvItuNQTmLKqVC9xTWX2IIKuiUj3njiyVP2Z-E
http://drive.google.com/open?id=1wwUWzhxocl_J44WO-mERPjZvkE6mCOVPJYRZX29Di6M
http://drive.google.com/open?id=1fblcDJLpKe_7iOb3Jvm0QvJwd7npb9w4q88G0jFrS24

4.3.1 START

4.3.2 STOP

4.3.3 RESTART

4.3.4 PAUSE

4.3.5 RESUME

4.3.6 CANCEL

4.3.7 SET

4.3.8 UPDATE

4.3.9 MOVE

4.3.10 REDIRECT

4.3.11 DELETE

4.3.12 SNAPSHOT

4.3.13 DETONATE

4.3.14 RESTORE

4.3.15 SAVE

4.3.16 THROTTLE

4.3.17 DELAY

4.3.18 SUBSTITUTE

31

http://drive.google.com/open?id=1RAK1_0wmz8ysqBggjn8d0gDGSJkww65KZGvjMAaaVoo
http://drive.google.com/open?id=1Kv7ajRR6DwjP3x8Oj0rGbatgtDcw6r2dvdtceOuXGOI
http://drive.google.com/open?id=14NrV6K5jOr4BFiOMZO0-fAkniLv3oOy2rWkZa_XZbrg
http://drive.google.com/open?id=11ce_FXuNWya3QODWZmFrkUt7BRIQW5iv4uSbnyU9Ggc
http://drive.google.com/open?id=17OQaqTK46T3mefzx-gww3ppIJ-SAvT-aCIj3GhwoJdQ
http://drive.google.com/open?id=1CQQPHdcBzI_ei3cvx5UiOQ18lRyWng9xTZg9PSnM5Uo
http://drive.google.com/open?id=1nrcScIi05IXn9AF5NBY4NUvssMDVpyDVTPvMgZW5Gfs
http://drive.google.com/open?id=1BN7VxyS8oGWOGgPbiAOVn2OsD_utaa7uMkQeaAkqSrc
http://drive.google.com/open?id=123w1EWa0WXctBUTbH64IwZdPGgrfb9j6ehdzC9sp1T0
http://drive.google.com/open?id=1RdOl8h7AawCdkKpTQ3pau5BmMC0czmavdFyCcDfSBok
http://drive.google.com/open?id=1ccgVYgBpzAOTFoLigxVzDXOAE7IynbgEGMeGUitLSAA
http://drive.google.com/open?id=1ql5nytQPLUMfrI8hF9pmYqem7WDHr040Lr8_nE11N_o
http://drive.google.com/open?id=1f4HQwi0kzjbdU9radL7m5FK9hEY5l5AmAjAO0jTQRZM
http://drive.google.com/open?id=1iNxdcIRMvQLw4y95PV563eLN9FaPMNIDZ3vbERwJ--g
http://drive.google.com/open?id=1pw1QqnEiABmjuruMNU7KZ916elkNaF7xh0jBbgvm8n4
http://drive.google.com/open?id=1UyTEdIer0vOywgeuOvlyDADMPCFrufkTeiUX_KzgnKw
http://drive.google.com/open?id=1MrTa7P3KIR8r8lNGy1XjBjQqnD6q5NioD4ljdsPZcGY
http://drive.google.com/open?id=1mtqf98aIMJH1SgbcDsRm6HQcLf1sB27fSZ6CFmy9Iuc

4.3.19 COPY

4.3.20 SYNC

4.4 Sensor-Related Actions
These actions are used to control the activities of a sensor in terms of how to collect and
provide the sensor data.

4.4.1 DISTILL

4.4.2 AUGMENT

4.5 Effects-Based Actions
Effects-based actions are at a higher level of abstraction and focus on the desired impact
rather than a command to execute specific tasks within an enclave. These actions enable
the coordination actions, while permitting a local enclave to execute actions in accordance
with its local policies and/or capabilities. .

Implementation of an effects-based action requires that the recipient enclave has a
decision making capability because an effects-based action permits multiple possible
responses.

4.5.1 INVESTIGATE

4.5.2 MITIGATE

4.5.3 REMEDIATE

4.6 Response and Alert
RESPONSE is used to provide data requested as a result of an action. The RESPONSE
message will contain the requested data and have a reference to the action that initiated

32

http://drive.google.com/open?id=1GS8S_0hVNf91A-rJvJDyzbN_0FrQ1DT6bILgoyYByDU
http://drive.google.com/open?id=1xA7CQ4L5itc5IaM0OYhh3o82xS0QIuDTFOvk2IUgywI
http://drive.google.com/open?id=1KH4iSnQGOObnTbsBu3fe7mLKPzFdtT7Cjtp_Aw8PHls
http://drive.google.com/open?id=1MyKWlZNCYAz4bXHBGEsI60Da_j7UeUTqcwn4qwrEsGM
http://drive.google.com/open?id=1aNY6OyR8VnWWXN2IsotyXhW0UBu0BB4IvlZ7rLRzjxc
http://drive.google.com/open?id=1ZDWAQcg8FhISPok-MJx8TRof-dZ3cSulaF4baTS3qfE
http://drive.google.com/open?id=1yKQMY8TyBEZ-YrzwivGv4C00qWg4GFuezdcpzTGJE_Q

the response. ALERT is used to signal the occurrence of an event or error. It is an
unsolicited message that does not reference a previously issued action.

4.6.1 RESPONSE

4.6.2 ALERT

33

http://drive.google.com/open?id=1CJNF2Ld5bZAQBJo8uEoUp8_7L-2bkBN794B_oPrEhTM
http://drive.google.com/open?id=1EyxUsd5xwew9UpP13d3kRRt7LHpOi1B9v-pCoJX0r4U

5. Example OpenC2 Use Case

34

Appendix A. Example OpenC2 Commands
[Document Note: These subsections in this appendix link to Appendix Sections in the Action
Detail sub-documents. It is the author's intention that the Appendix Sections be located in
this appendix in the final document.]

35

A.1 ALERT

A.2 ALLOW

A.3 AUGMENT

A.4 CANCEL

A.5 CONTAIN

A.6 COPY

A.7 DELAY

A.8 DELETE

A.9 DENY

A.10 DETONATE

A.11 DISTILL

A.12 INVESTIGATE

A.13 LOCATE

A.14 MITIGATE

A.15 MOVE

A.16 NOTIFY

36

https://docs.google.com/document/d/1fblcDJLpKe_7iOb3Jvm0QvJwd7npb9w4q88G0jFrS24/edit#bookmark=id.a3rmsm6pa5f1
https://docs.google.com/document/d/1MyKWlZNCYAz4bXHBGEsI60Da_j7UeUTqcwn4qwrEsGM/edit#bookmark=id.o8s3lspi7qfd
https://docs.google.com/document/d/1CQQPHdcBzI_ei3cvx5UiOQ18lRyWng9xTZg9PSnM5Uo/edit#bookmark=id.cg0bm2531vew
https://docs.google.com/document/d/1wwUWzhxocl_J44WO-mERPjZvkE6mCOVPJYRZX29Di6M/edit#bookmark=id.swh9auqedbc5
https://docs.google.com/document/d/1GS8S_0hVNf91A-rJvJDyzbN_0FrQ1DT6bILgoyYByDU/edit#bookmark=id.egzhy5rjukwy
https://docs.google.com/document/d/1MrTa7P3KIR8r8lNGy1XjBjQqnD6q5NioD4ljdsPZcGY/edit#bookmark=id.mut3n14jjam9
https://docs.google.com/document/d/1ccgVYgBpzAOTFoLigxVzDXOAE7IynbgEGMeGUitLSAA/edit#bookmark=id.pjphr2qhoi1v
https://docs.google.com/document/d/1gwsoizvItuNQTmLKqVC9xTWX2IIKuiUj3njiyVP2Z-E/edit#bookmark=id.b8srh87v6p97
https://docs.google.com/document/d/1f4HQwi0kzjbdU9radL7m5FK9hEY5l5AmAjAO0jTQRZM/edit#bookmark=id.m82kv23f8kxh
https://docs.google.com/document/d/1KH4iSnQGOObnTbsBu3fe7mLKPzFdtT7Cjtp_Aw8PHls/edit#bookmark=id.yoojyxxh0gpv
https://docs.google.com/document/d/1aNY6OyR8VnWWXN2IsotyXhW0UBu0BB4IvlZ7rLRzjxc/edit#bookmark=id.aew3hai4ewws
https://docs.google.com/document/d/1s43RwCeTAl6kCAnz5xqPb9m08S1L52_lXjjgucDG-lo/edit#bookmark=id.51vw3drwdr1q
https://docs.google.com/document/d/1s43RwCeTAl6kCAnz5xqPb9m08S1L52_lXjjgucDG-lo/edit#bookmark=id.51vw3drwdr1q
https://docs.google.com/document/d/123w1EWa0WXctBUTbH64IwZdPGgrfb9j6ehdzC9sp1T0/edit#bookmark=id.wutw3wai2hx2
https://docs.google.com/document/d/1baLlEJRNe8OhOQ1n7KRHC5WifQKXnOfqUPg_xhCPWf0/edit#bookmark=id.jzglkx2xd2gr

A.17 PAUSE

A.18 QUERY

A.19 REDIRECT

A.20 REMEDIATE

A.21 REPORT

A.22 RESPONSE

A.23 RESTART

A.24 RESTORE

A.25 RESUME

A.26 SAVE

A.27 SCAN

A.28 SET

A.29 SNAPSHOT

A.30 START

A.31 STOP

A.32 SUBSTITUTE

37

https://docs.google.com/document/d/11ce_FXuNWya3QODWZmFrkUt7BRIQW5iv4uSbnyU9Ggc/edit#bookmark=id.34325ujya2pf
https://docs.google.com/document/d/122pRSwWFIRq4jMgygaT9-FAXj4tFPamniVlpK-L-sp0/edit#bookmark=id.otnxqqbxldq1
https://docs.google.com/document/d/1RdOl8h7AawCdkKpTQ3pau5BmMC0czmavdFyCcDfSBok/edit#bookmark=id.3ofwfhemzrcf
https://docs.google.com/document/d/1yKQMY8TyBEZ-YrzwivGv4C00qWg4GFuezdcpzTGJE_Q/edit#bookmark=id.me4bojwvvxjv
https://docs.google.com/document/d/1jh476aAuT3aCpytmEQtMNG499MGuSEDq0U-pzRUtiPg/edit#bookmark=id.angq2hlxvn8v
https://docs.google.com/document/d/14NrV6K5jOr4BFiOMZO0-fAkniLv3oOy2rWkZa_XZbrg/edit#bookmark=id.5oq1yyd9x2nx
https://docs.google.com/document/d/1iNxdcIRMvQLw4y95PV563eLN9FaPMNIDZ3vbERwJ--g/edit#bookmark=id.mjxey3lv6jl7
https://docs.google.com/document/d/17OQaqTK46T3mefzx-gww3ppIJ-SAvT-aCIj3GhwoJdQ/edit#bookmark=id.bpu3dm3f4kpy
https://docs.google.com/document/d/1pw1QqnEiABmjuruMNU7KZ916elkNaF7xh0jBbgvm8n4/edit#bookmark=id.vc6b1uo9lx3g
https://docs.google.com/document/d/17RFbUa_MQziZkG0eCaaYrhrTl_3sL24Zh5sUhm5796I/edit#bookmark=id.elxg6clh0hf8
https://docs.google.com/document/d/1nrcScIi05IXn9AF5NBY4NUvssMDVpyDVTPvMgZW5Gfs/edit#bookmark=id.1r64lppp560x
https://docs.google.com/document/d/1ql5nytQPLUMfrI8hF9pmYqem7WDHr040Lr8_nE11N_o/edit#bookmark=id.v8ow1ya2h5t8
https://docs.google.com/document/d/1RAK1_0wmz8ysqBggjn8d0gDGSJkww65KZGvjMAaaVoo/edit#bookmark=id.premfpzgp2df
https://docs.google.com/document/d/1Kv7ajRR6DwjP3x8Oj0rGbatgtDcw6r2dvdtceOuXGOI/edit#bookmark=id.rutkazrlbw2j
https://docs.google.com/document/d/1mtqf98aIMJH1SgbcDsRm6HQcLf1sB27fSZ6CFmy9Iuc/edit#bookmark=id.9n21aq4w36dr

A.33 SYNC

A.34 THROTTLE

A.35 UPDATE

38

https://docs.google.com/document/d/1xA7CQ4L5itc5IaM0OYhh3o82xS0QIuDTFOvk2IUgywI/edit#bookmark=id.82ncev1ro2jy
https://docs.google.com/document/d/1UyTEdIer0vOywgeuOvlyDADMPCFrufkTeiUX_KzgnKw/edit#bookmark=id.qkaorzo6fyif
https://docs.google.com/document/d/1BN7VxyS8oGWOGgPbiAOVn2OsD_utaa7uMkQeaAkqSrc/edit#bookmark=id.sn4daf1zsl63

	
	
	
	Open Command and Control (OpenC2) Language Description Document
	
	
	FOREWORD
	
	
	TABLE OF CONTENTS
	
	
	1. Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Intended Audience
	1.4 Document Overview

	2. Background
	2.1 Design Principles
	2.2 OpenC2 and Deployment Environments

	3. OpenC2 Language
	3.1 Overview
	3.2 Abstract Syntax
	3.2.1 Action
	3.2.2 Target
	3.2.3 Actuator
	3.2.4 Specifiers
	3.2.5 Modifiers

	3.3 Actions
	3.4 Target Vocabulary
	3.5 Actuator Vocabulary
	3.6 Modifier Vocabulary

	4. EXAMPLE OpenC2 USAGE
	4.1 Actions that Control Information
	4.1.1 SCAN
	4.1.2 LOCATE
	4.1.3 QUERY
	4.1.4 REPORT
	4.1.5 NOTIFY

	4.2 Actions that Control Permissions
	4.2.1 DENY
	4.2.2 CONTAIN
	4.2.3 ALLOW

	4.3 Actions that Control Activities/Devices
	4.3.1 START
	4.3.2 STOP
	4.3.3 RESTART
	4.3.4 PAUSE
	4.3.5 RESUME
	4.3.6 CANCEL
	4.3.7 SET
	4.3.8 UPDATE
	4.3.9 MOVE
	4.3.10 REDIRECT
	4.3.11 DELETE
	4.3.12 SNAPSHOT
	4.3.13 DETONATE
	4.3.14 RESTORE
	4.3.15 SAVE
	4.3.16 THROTTLE
	4.3.17 DELAY
	4.3.18 SUBSTITUTE
	4.3.19 COPY
	4.3.20 SYNC

	4.4 Sensor-Related Actions
	4.4.1 DISTILL
	4.4.2 AUGMENT

	4.5 Effects-Based Actions
	4.5.1 INVESTIGATE
	4.5.2 MITIGATE
	4.5.3 REMEDIATE

	4.6 Response and Alert
	4.6.1 RESPONSE
	4.6.2 ALERT

	5. Example OpenC2 Use Case
	Appendix A. Example OpenC2 Commands
	A.1 ALERT
	A.2 ALLOW
	A.3 AUGMENT
	A.4 CANCEL
	A.5 CONTAIN
	A.6 COPY
	A.7 DELAY
	A.8 DELETE
	A.9 DENY
	A.10 DETONATE
	A.11 DISTILL
	A.12 INVESTIGATE
	A.13 LOCATE
	A.14 MITIGATE
	A.15 MOVE
	A.16 NOTIFY
	A.17 PAUSE
	A.18 QUERY
	A.19 REDIRECT
	A.20 REMEDIATE
	A.21 REPORT
	A.22 RESPONSE
	A.23 RESTART
	A.24 RESTORE
	A.25 RESUME
	A.26 SAVE
	A.27 SCAN
	A.28 SET
	A.29 SNAPSHOT
	A.30 START
	A.31 STOP
	A.32 SUBSTITUTE
	A.33 SYNC
	A.34 THROTTLE
	A.35 UPDATE

