
The HTML5 Picture Element:
WordPress
What is the <picture> element?

How does it work?

The <source /> element

How can it improve WordPress?

How do we handle styles?

How do we handle layout shifts?

How can it improve performance?

Markup Examples

Opt-in Support

Important WP Core Functions

What is the <picture> element?

The HTML5 <picture> element provides an alternative method of handling images on a

webpage.

Much like the <video> and <audio> elements, the <picture> element contains any number of

<source /> elements as well as an element that acts as a fallback for browsers

which do not support the <picture> element

The <picture> element provides new and improved ways of handling responsive images, but

most importantly, it can help in curating art-directed images. This essentially means that

developers can serve multiple versions of the same image, potentially with different image

formats,crops, or different content across devices.

How does it work?

How does the <picture> element actually work? There are a couple of behaviors to note:

1. The <picture> element itself behaves more like a block-level element container. It can

accept an id and className but limited styling should be applied to this element that is

intended to affect the element.

2. According to MDN, the picture element handles fallbacks in a somewhat unique way.

The picture and source elements are not capable of rendering an actual image. The

picture element itself is simply just a wrapper around source and img elements. When a

browser encounters a source element and the conditions match, the src of the img

element is overwritten (dynamically, no replacement in the browser).

3. If a condition is met, the user agent serves the url to the image attached to <source />

as the src of the element. This change is not rendered to the user in the

browser (no change in the DOM).

4. If no conditions are met, the original src is used.

<source /> elements do not contain width and height attributes, thus dimensions and aspect

ratio are controlled on the element itself.

A user can also implement object-position and object-fit when it comes to using the

<picture /> element. These 2 CSS properties provide greater flexibility in ensuring images

scale correctly across devices, especially with regards to aspect-ratio. All CSS properties

should be applied to the element, not the <picture /> element.

The <source /> element

Each <source /> element should contain the following attributes depending on the use case:

1. media - this is an inline media query, e.g min-width (800px)

2. type - mime type of the image, e.g. image/webp

3. srcset - this attribute is used to provide image descriptors of different widths that

match breakpoint conditions.

How can it improve WordPress?

Historically, WordPress has been slow to adopt the picture element for a number of reasons:

1. It adds complexity to an already complex ecosystem

2. There is no clear way to handle the amount of default and custom image sizes WP

generates on the fly

3. There's been no support for modern image formats (up until now)

4. A change in markup and classes could lead to millions of themes breaking.

5. Lack of browser support & support of Internet Explorer

Perhaps the biggest benefit of using the <picture> element is that WordPress could support

art-directed images. Cropping and editing images have been a feature in WordPress for quite

some time. However, users have lacked the ability to be able to assign different crops based on

device or responsive breakpoints.

The other benefit exists around performance and responsive images.

Some major advancements include:

- Support of next-gen formats such as AVIF.

- More adaptable user experiences, allowing the browser to determine the most

appropriate format and image size to serve.

- Proggresive Enhancement using fallbacks inherent with <picture> functionality.

WordPress has supported responsive images for a while now - using the srcset and sizes

attributes on elements.

Using the <picture> element, each <source /> can specify a number of image descriptors

based on the w descriptor in separate formats. Considering <source /> uses srcset and

media we can utilize the best of responsive images, modern formats AND art-directed crops

across devices.

WordPress never destructively edits the original uploaded image, so generating multiple .webp

images in different crops and widths to account for mobile devices, along with art-directed

.webp or .jpeg images is a possibility of note.

How do we handle styles?

The <picture> element, in terms of styling, behaves rather like the <figure> element - a

block level element. The only real use-case for the <picture> element itself is to provide a

containing wrapper around the <picture> element's own API. Thus any CSS that is applied in

order to treat images should be applied to the element itself and not the <picture>

How do we handle layout shifts?

No different than how we would handle CLS on normal images. width and height attributes

are applied to the nested within the <picture> element itself. The aspect-ratio CSS

property which is applied to all images by the user-agent stylesheet should keep dimensions

in check.

Can we still use loading=”lazy” on the <picture> element?

Yes. The difference being that the loading attribute is still placed on the element. Not

the <picture> element itself.

How can it improve performance?

The biggest performance benefit with regards to the <picture> element revolves around its

ability to selectively serve appropriate images based on device type. The API allows developers

to provide a well-thought out strategy when it comes to:

- serving images in modern formats and serving fallback image types when a modern

format isn’t supported by the browser

- serving optimized images based on device or breakpoint width

- a combination of both which impacts not only performance but user-experience too.

Markup Examples

https://github.com/dainemawer/performant-html

Opt-in Support

add_theme_support(“picture”);

The above method which has more than likely been mentioned in previous tickets, would

provide a far more versatile way to add picture support to a theme. The notion of replacing all

image markup in post_content / templates could create a fair amount of regression in already

built themes. Adding the above call to add_theme_support will allow developers to disable,

enable, or provide support for the picture element in a holistic and well-supported /

incremental manner.

Another option is to include picture support in add_theme_support('html5')

add_theme_support(“html5”, array(“caption”, “gallery”, “picture”));

https://github.com/dainemawer/performant-html

Important WP Core Functions

The below list of functions would probably be a useful place to start in terms of building the

<picture> markup and rendering it out in post content.

Function Reference Purpose

wp_get_attachment_image_src Codex Retrieves an image to represent an
attachment.

wp_get_attachment_image_srcset Codex Retrieves the value for an image
attachment’s ‘srcset’ attribute.

wp_calculate_image_srcset Codex A helper function to calculate the
image sources to include in a
‘srcset’ attribute.

wp_get_attachment_image_sizes Codex Retrieves the value for an image
attachment’s ‘sizes’ attribute.

wp_image_src_get_dimensions Codex Determines an image’s width and
height dimensions based on the
source file.

wp_get_image_mime Codex Returns the real mime type of an
image file.

Browser Support

This table conveys the cross-browser testing results of the examples contained in

https://github.com/dainemawer/performant-html

Browser E.g 1 E.g 2 E.g 3 E.g 4 E.g 5

Safari ✅ ✅ ⛔ ⛔ ✅

Chrome ✅ ✅ ✅ ✅ ✅

FireFox ✅ ✅ ✅ ✅ ✅

https://developer.wordpress.org/reference/functions/wp_get_attachment_image_src/
https://developer.wordpress.org/reference/functions/wp_get_attachment_image_srcset/
https://developer.wordpress.org/reference/functions/wp_calculate_image_srcset/
https://developer.wordpress.org/reference/functions/wp_get_attachment_image_sizes/
https://developer.wordpress.org/reference/functions/wp_image_src_get_dimensions/
https://developer.wordpress.org/reference/functions/wp_get_image_mime/
https://github.com/dainemawer/performant-html

WP Plugins Cross Reference

See: Plugins Conversion to Webp

Plugin Picture Support Approach

WebP Express ✅ 1. Removes all tags
and any <picture> tags that
already exist.
2. Processes all tags
found using a regex.
3. All attributes are parsed
with DOMDocument.
4. Re-inserts elements into
DOM.
5. Filtered through
the_content

WPvivid Imgoptim Free ⛔ No support for <picture>
element

Autoptimize ⛔ Processes <picture>
elements in terms of
amending optimized images
based on settings but does
no conversions from
to <picture>

EWWW Image Optimizer ✅ View filter_page_output
function in
ewww-image-optimizer/cla
sses/class-eio-picture-w
ebp.php

Compress Images with
Squeeze Img

⛔ No support for <picture>
element.

Easy WebP ⛔ No support for <picture>
element.

Femora Compress ⛔ No support for <picture>
element.

Flying Images by WP Speed
Matters

⛔ No support for <picture>
element.

https://docs.google.com/document/d/18UdUoJnBnScwxRjMIEmCjN9h9aF6uJHHk2cMSwtlwMg/edit#

WP Media Optimizer ⛔ No support for <picture>
element.

Auto Webp Image Converter ⛔ No support for <picture>
element.

Imagify ✅ 1. Removes existing
<picture> tags using
preg_replace

2. Rebuilds <picture>
tags.

3. Replaces all
tags with <picture>

4. Adds Gutenberg
support for
<picture> tags.

5. Runs on
template_redirect
hook.

