
Protocol Buffer Tooling and Definitions
Although Protocol Buffers are, in many ways, highly standardized, there’s a wide range of
tooling available to work with them. In general, we’ve been operating in both the “vanilla”
Protocol Buffer world and the “gogo/protobuf” world--two related-but-distinct projects, which use
a distinct-but-overlapping set of terms and concepts.

In order to facilitate future discussions and planning about our Protocol Buffer tooling, I wanted
to take the time to write down the distinctions between these two projects, and to define the
terms they use.

Glossary
“Vanilla” Protocol Buffers refers to the tooling created and maintained by Google. In this
universe, we have a few important terms:

● protoc is the Protocol Buffer compiler that is maintained by Google. It turns .proto
definitions into generated source code.

● Plugins are programs which can read “request” protocol buffers from stdin and then
write “response” protocol buffers to stdout. This is the approach that Google
recommends for third-party code generation. See the official documentation for more.

● protoc-gen-go is a plugin for protoc that lets protoc generate Go code. It is also
maintained by Google. See the Godoc for more.

● Extensions are fields in messages defined in .proto files, and are the way that these
messages are able to extend one another. For example, if I define a message called foo
with an extension field, other people can extend foo with their own field types. See the
official documentation for more.

But in the gogo/protobuf world, things are a little bit different. https://github.com/gogo/protobuf
is a fork of “vanilla” Protocol Buffers that generates a compatible serialization format but offers
more configurable options for code generation in Go. In this world, the important terms are:

● protoc-gen-gogo is another Protocol Buffer compiler plugin, which can be used with
protoc to enable the extensions included in the gogo/protobuf project. See the Godoc for
more.

● Extensions are annotations in the proto fields which are used by the compiler to inform
the generated code. For example, Regen’s Cosmos Proto repo contains definitions for
extensions which protoc can use to generate Go code that contains Go interfaces. This
is a different use of the word “extension” from above.

https://developers.google.com/protocol-buffers/docs/reference/other
https://godoc.org/github.com/golang/protobuf/protoc-gen-go
https://developers.google.com/protocol-buffers/docs/proto#extensions
https://developers.google.com/protocol-buffers/docs/proto#extensions
https://github.com/gogo/protobuf
https://github.com/gogo/protobuf/blob/master/protoc-gen-gogo/doc.go
https://github.com/regen-network/cosmos-proto


In other words: We always use protoc as our compiler, but we have a choice of plugin
(protoc-gen-go or protoc-gen-gogo). If using protoc-gen-gogo, we can also choose from a
range of extensions which impact the generated code.

Current State
The Cosmos SDK uses the protoc compiler with the protoc-gen-gogo plugin and a variety of
extensions, including those from Regen’s Cosmos Proto repo. The Go code generated this way
has several advantages, including being a more natural replacement for the code that was used
with Amino.

Meanwhile, Tendermint Core would like to use the protoc compiler with the vanilla
protoc-gen-go plugin.

In theory, it should be OK for different applications to use different proto plugins. As the only
difference is that the generated Go code is different, it’s fine to use different plugins, or even
different compilers, across different projects if those projects are only communicated through
serialized data. In other words, this is fine as long as the generated types are only used
internally. Unfortunately, Tendermint currently exposes generated types in its public Go APIs,
which means that we have to use exactly the same generated types as our applications, which
means that we must use the same proto compilers, plugins and extensions.

So in order to maintain compatibility with the SDK, we are using gogoproto with the same
plugins--for now. We will ultimately switch to the vanilla proto compiler, although this will require
us to rewrite our public Go API to use “domain” types rather than generated types.


