ADMINISTRACION DE MEMORIA

La parte del sistema operativo que administra (parte de) la jerarquia de memoria se conoce
como administrador de memoria. Su trabajo es administrar la memoria con eficiencia: llevar
el registro de cuales partes de la memoria estan en uso, asignar memoria a los procesos
cuando la necesiten y desasignarla cuando terminen.

e SIN ABSTRACCION DE MEMORIA

OxFFF ... :
. Drivers de
Slsterr_1a dispositivos
operativo en ROM
en ROM
Programa
de usuario Programa
de usuario
Programa
de usuario
Sistema Sistema
operativo operativo
en RAM en RAM
0 0 0
(a) (b) (c)

Figura 3-1. Tres formas simples de organizar la memoria con un sistema operativo y
un proceso de usuario. También existen otras posibilidades.

El primer modelo se utilizé6 antes en las mainframes y minicomputadoras, pero actualmente
casi no se emplea. El segundo modelo se utiliza en algunas computadoras de bolsillo y
sistemas integrados. El tercer modelo fue utilizado por las primeras computadoras
personales (por ejemplo, las que ejecutaban MS-DOS), donde la porcién del sistema en la
ROM se conoce como BIOS (Basic Input Output System, Sistema basico de entrada y
salida). Los modelos (a) y (c) tienen la desventaja de que un error en el programa de
usuario puede borrar el sistema operativo, posiblemente con resultados desastrosos (la
informacion del disco podria quedar ininteligible).

1. Ejecucién de multiple programas sin una abstraccion de memoria

1.1. No obstante, aun sin abstraccibn de memoria es posible ejecutar varios
programas al mismo tiempo. Lo que el sistema operativo debe hacer es
guardar todo el contenido de la memoria en un archivo en disco, para
después traer y ejecutar el siguiente programa. Mientras soélo haya un
programa a la vez en la memoria no hay conflictos.

1.2. El registro PSW (Program Status Word, Palabra de estado del programa)
también contenia una llave de 4 bits.

[0 Joeres

CMP 16412
16408
16404
16400
16396
16392
16388
JMP 28 16384

o0 [0 Jesoso [0 160

ADD 28 CMP 28 ADD 28
MOV 24 24 MOV 24
20 20 20
16 16 16
12 12 12
8 8 8
4 4 4
JMP 24 0 JMP 28 0 JMP 24 0
@ (b) (©)
Figura 3-2. Tlustracion del problema de reubicacién. (a) Un programa de 16 KB. (b)

Otro programa de 16 KB. (c¢) Los dos programas cargados consecutivamente en la me-
moria.

Reubicacion estatica: cuando se cargaba un programa en la direccion 16,384, se

sumaba el valor constante 16,384 a todas las direcciones del programa durante el
proceso de carga.

UNA ABSTRACCION DE MEMORIA: ESPACIOS DE DIRECCIONES
La nocién de un espacio de direcciones

Hay que resolver dos problemas para permitir que haya varias aplicaciones en
memoria al mismo tiempo sin que interfieran entre si: proteccion y reubicacion.

1.1. Una solucion primitiva al primer problema en la IBM 360: etiquetar trozos de
memoria con una llave de proteccion y comparar la llave del proceso en
ejecucion con la de cada palabra de memoria obtenida por la CPU. Sin
embargo, este método por si solo no resuelve el segundo problema, aunque
se puede resolver mediante la reubicacién de los programas al momento de
cargarlos, pero ésta es una solucion lenta y complicada.

1.2. Un espacio de direcciones (address space) es el conjunto de direcciones que
puede utilizar un proceso para direccionar la memoria. Cada proceso tiene su
propio espacio de direcciones, independiente de los que pertenecen a otros
procesos

1.3. Registros base y limite
1.3.1. La solucion sencilla utiliza una versién muy simple de la reubicacion

dinamica. Lo que hace es asociar el espacio de direcciones de cada
proceso sobre una parte distinta de la memoria fisica, de una manera

simple. Es equipar cada CPU con dos registros de hardware
especiales, conocidos comunmente como los registros base y limite.

1.3.2. Cuando se ejecuta un proceso, el registro base se carga con la
direccion fisica donde empieza el programa en memoria y el registro
limite se carga con la longitud del programa.

1.3.3. Una desventaja de la reubicacién usando los registros base y limite
es la necesidad de realizar una suma y una comparacion en cada
referencia a memoria. Las comparaciones se pueden hacer con
rapidez, pero las sumas son lentas debido al tiempo de propagacion
del acarreo, a menos que se utilicen circuitos especiales de suma.

16384
[0 Joeres
Registro limite
CMP 16412

16408
16404
16400
16396
16392
16388
[16384 |——| JmP28 |16384

f 0 16380
Registro base :
ADD 28
MOV 24
20
16
12
8
4
JMP 24 0

(c)

Figura 3-3. Se pueden utilizar registros base y limite para dar a cada proceso un espa-
cio de direcciones separado.

Intercambio

2.1. En la practica, la cantidad total de RAM que requieren todos los procesos es
a menudo mucho mayor de lo que puede acomodarse en memoria.

2.2. La estrategia mas simple, conocida como intercambio, consiste en llevar
cada proceso completo a memoria, ejecutarlo durante cierto tiempo y
después regresarlo al disco.

2.3. La oftra estrategia, conocida como memoria virtual, permite que los
programas se ejecuten incluso cuando soélo se encuentran en forma parcial
en la memoria.

Tiempo —™

c Cc C c Cc
B B B B
A
A A A
D D D
Sistema Sistema Sistema Sistema Sistema Sistema Sistema
operativo operativo operativo operativo operativo operativo operativo

(@) (b) (© (d) (e) (f) (@)

Figura 3-4. La asignacion de la memoria cambia a medida que llegan procesos a la
memoria y salen de ésta. Las regiones sombreadas son la memoria sin usar.

2.4. Cuando el intercambio crea varios huecos en la memoria, es posible
combinarlos todos en uno grande desplazando los procesos lo mas hacia
abajo que sea posible. Esta técnica se conoce como compactacion de
memoria.

Fepaciopara crecer [e } Espacio para crecer
777777 L p p

Datos de B

Realmente en uso
Programa de B

|
|
} Pila de A
|

Espacio para crecer ~ |----- E R
‘t A } Espacio para crecer
Datos de A
A Realmente en uso
Programa de A
Sistema Sistema
operativo operativo

(a) (b)

Figura 3-5. (a) Asignacion de espacio para un segmento de datos en crecimiento.
(b) Asignacion de espacio para una pila en crecimiento y un segmento de datos en cre-
cimiento.

Administracion de memoria libre
3.1. Administracién de memoria con mapas de bits

3.1.1. Con un mapa de bits, la memoria se divide en unidades de asignacion
tan pequefias como unas cuantas palabras y tan grandes como varios
kilobytes. Para cada unidad de asignacién hay un bit correspondiente
en el mapa de bits, que es 0 si la unidad esta libre y 1 si esta ocupada

,.A..V/ﬂs,.?l.l..ﬁ;%)
.

11111000 |P|0|5| {—>|H|5|3| %—>|P|8|6|-{—>|P|m|4|-%>
11111111
11001111

1111000 C|HI18|2|-|—>IF’|2°I6|—|—>IF’|26|3|-|—>|HI29|3I><|
AN f

S Hueco Empieza Longitud Proceso
enla18 2
(b) (©

Figura 3-6. (a) Una parte de la memoria con cinco procesos y tres huecos. Las mar-
cas de graduacion muestran las unidades de asignacion de memoria. Las regiones som-
breadas (0 en el mapa de bits) estan libres. (b) El mapa de bits correspondiente. (c) La
misma informacion en forma de lista.

3.1.2. Un mapa de bits proporciona una manera simple de llevar el registro
de las palabras de memoria en una cantidad fija de memoria, debido
a que el tamafo del mapa de bits sélo depende del tamafio de la
memoria y el tamafo de la unidad de asignacion.

3.1.3. El problema principal es que, cuando se ha decidido llevar un proceso
de k unidades a la memoria, el administrador de memoria debe
buscar en el mapa para encontrar una serie de k bits consecutivos
con el valor 0 en el mapa de bits. El proceso de buscar en un mapa
de bits una serie de cierta longitud es una operacion lenta

3.2. Administracién de memoria con listas ligadas

3.2.1. Otra manera de llevar el registro de la memoria es mantener una lista

ligada de segmentos de memoria asignados y libres, en donde un

segmento contiene un proceso o es un hueco vacio entre dos
procesos

Antes de que termine X Después de que termina X

@| A | x | B |seconvieteen| A 7] B
| A | X 7 seconvieneen| A V77
© X | B |seconvieneen /] B
& V7 x V) seconvieneen//////)

Figura 3-7. Cuatro combinaciones de los vecinos para el proceso en terminacion, X.

3.2.2. El algoritmo mas simple es el de primer ajuste: el administrador de
memoria explora la lista de segmentos hasta encontrar un hueco que
sea lo bastante grande. Después el hueco se divide en dos partes,
una para el proceso y otra para la memoria sin utilizar, excepto en el
estadisticamente improbable caso de un ajuste exacto. El algoritmo
del primer ajuste es rapido debido a que busca lo menos posible.

3.2.3. siguiente ajuste: Funciona de la misma manera que el primer ajuste,
excepto porque lleva un registro de dénde se encuentra cada vez que
descubre un hueco adecuado. La siguiente vez que es llamado para
buscar un hueco, empieza a buscar en la lista desde el lugar en el
que se quedo la ultima vez, en vez de empezar siempre desde el
principio, como el algoritmo del primer ajuste. Las simulaciones
realizadas por Bays (1977) muestran que el algoritmo del siguiente
ajuste tiene un rendimiento ligeramente peor que el del primer ajuste.

3.2.4. Mejor ajuste: Este algoritmo busca en toda la lista, de principio a finy
toma el hueco mas pequefio que sea adecuado. En vez de dividir un
gran hueco que podria necesitar después, el algoritmo del mejor
ajuste trata de buscar un hueco que esté cerca del tamarfio actual
necesario, que coincida mejor con la solicitud y los huecos
disponibles. El algoritmo del mejor ajuste es mas lento que el del
primer ajuste, ya que debe buscar en toda la lista cada vez que se le
llama. De manera sorprendente, también provoca mas desperdicio de
memoria que los algoritmos del primer ajuste o del siguiente ajuste,
debido a que tiende a llenar la memoria con huecos pequefos e
inutilizables.

3.2.5. Peor ajuste: es decir, tomar siempre el hueco mas grande disponible,
de manera que el nuevo hueco sea lo bastante grande como para ser
util. La simulacion ha demostrado que el algoritmo del peor ajuste no
es muy buena idea tampoco.

3.26. Con una lista de huecos ordenada por tamafo, los algoritmos del
primer ajuste y del mejor ajuste son igual de rapidos, y hace
innecesario usar el del siguiente ajuste. Ajuste rapido, el cual
mantiene listas separadas para algunos de los tamafios mas
comunes solicitados. Buscar un hueco del tamafio requerido es
extremadamente rapido, pero tiene la misma desventaja que todos los
esquemas que se ordenan por el tamafo del hueco: cuando un
proceso termina o es intercambiado, buscar en sus vecinos para ver
si es posible una fusidn es un proceso costoso.

MEMORIA VIRTUAL

Mientras que los registros base y limite se pueden utilizar para crear la abstraccion
de los espacios de direcciones, hay otro problema que se tiene que resolver: la
administracion del agrandamiento del software (bloatware).

El método ideado (Fotheringham, 1961) se conoce actualmente como memoria
virtual. La idea basica detras de la memoria virtual es que cada programa tiene su
propio espacio de direcciones, el cual se divide en trozos llamados paginas. Cada
pagina es un rango contiguo de direcciones. Estas paginas se asocian a la memoria
fisica, pero no todas tienen que estar en la memoria fisica para poder ejecutar el
programa. Cuando el programa hace referencia a una parte de su espacio de
direcciones que esta en la memoria fisica, el hardware realiza la asociacion
necesaria al instante. Cuando el programa hace referencia a una parte de su
espacio de direcciones que no esta en la memoria fisica, el sistema operativo recibe
una alerta para buscar la parte faltante y volver a ejecutar la instruccién que fallé.

Paginacion

1.1. . Las direcciones se pueden generar usando indexado, registros base,
registros de segmentos y otras formas mas.Estas direcciones generadas por
el programa se conocen como direcciones virtuales y forman el espacio de
direcciones virtuales. Cuando se utiliza memoria virtual, las direcciones
virtuales no van directamente al bus de memoria. En vez de ello, van a una
MMU (Memory Managemente Unit, Unidad de administracion de memoria)
que asocia las direcciones virtuales a las direcciones de memoria fisicas

1.2. El espacio de direcciones virtuales se divide en unidades de tamafio fijo
llamadas paginas. Las unidades correspondientes en la memoria fisica se
llaman marcos de pagina. Las paginas y los marcos de pagina por lo general
son del mismo tamafio.

1.3. La MMU detecta que la pagina no esta asociada (lo cual se indica mediante
una cruz en la figura) y hace que la CPU haga un trap al sistema operativo. A
este trap se le llama fallo de pagina. El sistema operativo selecciona un
marco de pagina que se utilice poco y escribe su contenido de vuelta al disco
(si no es que ya esta ahi). Después obtiene la pagina que se acaba de
referenciar en el marco de pagina que se acaba de liberar, cambia la
asociacion y reinicia la instruccién que originé el trap.

1.4. ElI numero de pagina se utiliza como indice en la tabla de paginas,
conduciendo al numero del marco de pagina que corresponde a esa pagina
virtual. Si el bit de presente/ausente es 0, se provoca un trap al sistema
operativo. Si el bit es 1, el numero del marco de pagina encontrado en la
tabla de paginas se copia a los 3 bits de mayor orden del registro de salida,
junto con el desplazamiento de 12 bits, que se copia sin modificaciéon de la
direccién virtual entrante. En conjunto forman una direccion fisica de 15 bits.
Después, el registro de salida se coloca en el bus de memoria como la
direccién de memoria fisica.

2.

Direccion
[1]1]o]oJofoJoJofo[o]o[o]*]o]o] fisica saliente

(24580)
o

15| 000
14| 000
13| 000
12| 000
11 111
10| 000
9| 101
8| 000
7| 000
6| 000
5| o1
4 100
3
2
1
0

El desplazamiento
de 12 bits copiado
directamente de la
enirada a la salida

Tabla de
paginas

000
110
001
010

= 110]
Bit de

-~ presente/
ausente

La pagina virtual = 2 se

utiliza como indice en la

tabla de paginas Direccion
virtual

entrante (8196)

alal=l=l=]=]olelol=|lol=]o|lolale

[o]o]*]o]ofofo[o]ofoe]o]o]o]1]o]o]

i

Figura 3-10. La operacion interna de la MMU con 16 paginas de 4 KB.

Tablas de paginas

2.1.

2.2.

2.3.

El numero de pagina virtual se utiliza como indice en la tabla de paginas para
buscar la entrada para esa pagina virtual. En la entrada en la tabla de
paginas, se encuentra el nimero de marco de pagina (si lo hay). El nUmero
del marco de pagina se adjunta al extremo de mayor orden del
desplazamiento, reemplazando el nimero de pagina virtual, para formar una
direccion fisica que se pueda enviar a la memoria.

Por ende, el propdsito de la tabla de paginas es asociar paginas virtuales a
los marcos de pagina. Hablando en sentido matematico, la tabla de paginas
es una funciéon donde el nimero de pagina virtual es un argumento y el
numero de marco fisico es un resultado. Utilizando el resultado de esta
funcién, el campo de la pagina virtual en una direccién virtual se puede
reemplazar por un campo de marco de pagina, formando asi una direccion
de memoria fisica.

Estructura de una entrada en la tabla de paginas

2.3.1. El campo mas importante es el nUmero de marco de pagina. Después

de todo, el objetivo de la asociacion de paginas es mostrar este valor.

2.3.2. Enseguida de este campo tenemos el bit de presente/ausente. Si este

bit es 1, la entrada es valida y se puede utilizar. Si es 0, la pagina
virtual a la que pertenece la entrada no se encuentra actualmente en
la memoria. Al acceder a una entrada en la tabla de pagina con este
bit puesto en 0 se produce un fallo de pagina.

Uso de caché
deshabilitado Modificada Presente/ausente

/

/ /

Numero de marco de pagina

N\

Referenciada Proteccion

Figura 3-11. Una tipica entrada en la tabla de paginas.

2.3.3.

2.34.

2.3.5.

2.3.6.

Los bits de proteccion indican qué tipo de acceso esta permitido. En
su forma mas simple, este campo contiene 1 bit, con 0 para
lectura/escritura y 1 para soélo lectura. Un arreglo mas sofisticado es
tener 3 bits: uno para habilitar la lectura, otro para la escritura y el
tercero para ejecutar la pagina.

Los bits de modificada y referenciada llevan el registro del uso de
paginas. Cuando se escribe en una pagina, el hardware establece de
manera automatica el bit de modificada. Este bit es valioso cuando el
sistema operativo decide reclamar un marco de pagina. Si la pagina
en €l ha sido modificada (es decir, esta “sucia”), debe escribirse de
vuelta en el disco. Si no se ha modificado (es decir, esta “limpia”) sélo
se puede abandonar, debido a que la copia del disco es aun valida. A
este bit se le conoce algunas veces como bit sucio, ya que refleja el
estado de la pagina

El bit de referenciada se establece cada vez que una pagina es
referenciada, ya sea para leer o escribir. Su funcién es ayudar al
sistema operativo a elegir una pagina para desalojarla cuando ocurre
un fallo de pagina.

El ultimo bit permite deshabilitar el uso de caché para la pagina. Esta
caracteristica es importante para las paginas que se asocian con los
registros de dispositivos en vez de la memoria. Con este bit, el uso de
la caché se puede desactivar. Las maquinas que tienen un espacio de
E/S separado y no utilizan E/S asociada a la memoria no necesitan
este bit.

3. Aceleracion de la paginacion

3.1. Laasociacién de una direccion virtual a una direccion fisica debe ser rapida.

3.1.1.

Si la ejecucion de una instruccién tarda, por ejemplo 1 nseg, la
busqueda en la tabla de paginas debe realizarse en menos de 0.2
nseg para evitar que la asociacion se convierta en un cuello de botella
importante.

3.2. Si el espacio de direcciones virtuales es grande, la tabla de paginas sera

grande

3.2.1.

Con 1 millén de paginas en el espacio de direcciones virtual, la tabla
de paginas debe tener 1 millébn de entradas. Y recuerde que cada
proceso necesita su propia tabla de paginas (debido a que tiene su
propio espacio de direcciones virtuales).

3.3. Buferes de traduccion adelantada

3.3.1. El punto inicial de la mayor parte de las técnicas de optimizacion es
que la tabla de paginas esta en la memoria. Potencialmente, este
disefio tiene un enorme impacto sobre el rendimiento. Por ejemplo,
considere una instruccion de 1 byte que copia un registro a otro. A
falta de paginacion, esta instruccion hace sélo una referencia a
memoria para obtener la instruccién. Con la paginacién se requiere al
menos una referencia adicional a memoria para acceder a la tabla de
paginas.

3.3.2. La solucién que se ha ideado es equipar a las computadoras con un
pequefo dispositivo de hardware para asociar direcciones virtuales a
direcciones fisicas sin pasar por la tabla de paginas. El dispositivo,
llamado TLB (Translation Lookaside Buffer, Bufer de traduccion
adelantada) o algunas veces memoria asociativa

Marco de
Valida | Pagina virtual | Modificada| Proteccion pagina
1| 140 _ 1 AW ‘ a1
1| 20 | 0 | R X . 38
| 1 | 130 | 1 . Rw | 29
1 | 129 1 RW 62
: 9 0 R X L 80
1| 21 0 R X | 45
1 [860 | 1 | RwW ' 14
v | ee 1 | RW ' 75
Figura 3-12. Un TLB para acelerar la paginacion.
3.3.3. Cuando se presenta una direccion virtual a la MMU para que la

traduzca, el hardware primero comprueba si su niumero de pagina
virtual esta presente en el TLB al compararla con todas las entradas
en forma simultanea (es decir, en paralelo). Si se encuentra una
coincidencia valida y el acceso no viola los bits de proteccion, el
marco de pagina se toma directamente del TLB, sin pasar por la tabla
de paginas. Si el numero de pagina virtual esta presente en el TLB,
pero la instruccidn esta tratando de escribir en una pagina de sélo
lectura, se genera un fallo por proteccion.

3.3.4. Un caso interesante es lo que ocurre cuando el numero de pagina
virtual no esta en el TLB. La MMU detecta que no esta y realiza una
busqueda ordinaria en la tabla de paginas. Después desaloja una de
las entradas del TLB y la reemplaza con la entrada en la tabla de
paginas que acaba de buscar.

3.4. Administracion del TLB mediante software

3.4.1. Cuando no se encuentra una coincidencia en el TLB, en vez de que la
MMU vaya a las tablas de paginas para buscar y obtener la referencia
a la pagina que se necesita, sélo genera un fallo del TLB y pasa el
problema al sistema operativo. El sistema debe buscar la pagina,
eliminar una entrada del TLB, introducir la nueva pagina y reiniciar la
instruccién que origind el fallo. Y, desde luego, todo esto se debe
realizar en unas cuantas instrucciones, ya que los fallos del TLB
ocurren con mucha mayor frecuencia que los fallos de pagina.

3.4.2. Para reducir los fallos del TLB, algunas veces el sistema operativo
averigua de modo “intuitivo” cuadles paginas tienen mas probabilidad
de ser utilizadas a continuacion y precarga entradas para ellas en el
TLB.

3.4.3. El problema al realizar esta busqueda en software es que las paginas
que contienen la tabla de paginas tal vez no estén en el TLB, lo cual
producira fallos adicionales en el TLB durante el procesamiento.
Estos fallos se pueden reducir al mantener una caché grande en
software (por ejemplo, de 4 KB) de entradas en el TLB en una
ubicacién fija, cuya pagina siempre se mantenga en el TLB.

3.4.4. Un fallo suave ocurre cuando la pagina referenciada no esta en el
TLB, sino en memoria. Todo lo que se necesita aqui es que el TLB se
actualice. No se necesita E/S de disco. Por lo general, un fallo suave
requiere de 10 a 20 instrucciones de maquina y se puede completar
en unos cuantos nanosegundos. Por el contrario, un fallo duro ocurre
cuando la misma pagina no esta en memoria (y desde luego, tampoco
en el TLB). Se requiere un acceso al disco para traer la pagina, lo
cual tarda varios milisegundos. Un fallo duro es en definitiva un millén
de veces mas lento que un fallo suave.

4. Tablas de paginas para memorias extensas
4.1. Tablas de paginas multinivel
4.1.1. El secreto del método de la tabla de paginas multinivel es evitar

mantenerlas en memoria todo el tiempo, y en especial, aquellas que
no se necesitan

4.2.

Tablas de paginas
de segundo nivel

[T Tabla de
—+— | paginas
——» | paralos
T [4M
— , | superiores
— , | dela
memaoria
— -
N s
Tabla de paginas
de nivel superior
1023 7 | —
6 e
Bits 10 10 12 5 - .
Desp
TP1 | TP2 miento | 4 —
3 —
(a) 2 .
1 e
i -\\ -
1023
6 =g
5 ———
4 —
3 . Alas
5 —]_, Paginas
1 —
0 -

(b)

Figura 3-13. (a) Una direccion de 32 bits con dos campos de tablas de paginas.
(b) Tablas de paginas de dos niveles.

4.1.2.

4.1.3.

Lo interesante acerca de la figura 3-13 es que, aunque el espacio de
direcciones contiene mas de un millon de paginas, en realidad sélo
cuatro tablas de paginas son requeridas: la tabla de nivel superior y
las tablas de segundo nivel de 0 a 4M (para el texto del programa), de
4M a 8M (para los datos) y los 4M superiores (para la pila).

Sin embargo, si el espacio de direcciones es de 264 bytes, con
paginas de 4KB, necesitamos una tabla de paginas con 252 entradas.
Si cada entrada es de 8 bytes, la tabla es de mas de 30 millones de
gigabytes (30 PB). Ocupar 30 millones de gigabytes sélo para la tabla
de paginas no es una buena idea por ahora y probablemente tampoco
lo sea para el préximo afio

Tablas de paginas invertidas

4.2.1.

4.2.2.

En este disefio hay una entrada por cada marco de pagina en la
memoria real, en vez de tener una entrada por pagina de espacio de
direcciones virtuales.

Aunque las tablas de pagina invertidas ahorran grandes cantidades
de espacio, al menos cuando el espacio de direcciones virtuales es
mucho mayor que la memoria fisica, tienen una seria desventaja: la
traduccion de direccion virtual a direccion fisica se hace mucho mas
dificil.

4.2.3. La forma de salir de este dilema es utilizar el TLB. Si el TLB puede
contener todas las paginas de uso frecuente, la traduccién puede
ocurrir con igual rapidez que con las tablas de paginas regulares. Sin
embargo, en un fallo de TLB la tabla de paginas invertida tiene que
buscarse mediante software. Una manera factible de realizar esta
busqueda es tener una tabla de hash arreglada segun el hash de la
direccion virtual. Una vez que se ha encontrado el numero de marco
de pagina, se introduce el nuevo par (virtual, fisica) en el TLB

Tabla de paginas
tradicional con una
entrada para cada
una de las 252 paginas

g2]

-~ ~

La memoria fisica de
1 GB tiene 218 marcos
de pagina de 4 KB Tabla de hash

18 . 18 . — I I T |
2 12_’:h| 2 1:5 +

— ~ ~

= . =

— |]
Indexada por Indexada por / \
pagina virtual hash en pagina Pagina Marco
virtual virtual de pagina

Figura 3-14. Comparacion de una tabla de paginas tradicional con una tabla de pagi-
nas invertida.

e ALGORITMOS DE REEMPLAZO DE PAGINAS

Cuando ocurre un fallo de pagina, el sistema operativo tiene que elegir una pagina
para desalojarla (eliminarla de memoria) y hacer espacio para la pagina entrante. Si
la pagina a eliminar se modific6 mientras estaba en memoria, debe volver a
escribirse en el disco para actualizar la copia del mismo.

Un segundo ejemplo es en un servidor Web. El servidor puede mantener cierto
nuamero de paginas Web de uso muy frecuente en su memoria caché. Sin embargo,
cuando la memoria caché esta llena y se hace referencia a una nueva pagina, hay
que decidir cual pagina Web se debe desalojar.

El algoritmo de reemplazo de paginas 6ptimo

1.1. El mejor algoritmo de reemplazo de paginas posible es facil de describir, pero
imposible de implementa

1.2. establece que la pagina con la etiqueta mas alta debe eliminarse. Si una
pagina no se va a utilizar durante 8 millones de instrucciones y otra no se va
a utilizar durante 6 millones de instrucciones, al eliminar la primera se enviara
el fallo de pagina que la obtendra de vuelta lo mas lejos posible en el futuro.

1.3. El uUnico problema con este algoritmo es que no se puede realizar. Al
momento del fallo de pagina, el sistema operativo no tiene forma de saber
cuando sera la préxima referencia a cada una de las paginas

2.

El algoritmo de reemplazo de paginas: no usadas recientemente

2.1.

2.2.

2.3.

El sistema operativo establece el bit R (en sus tablas internas), cambia la
entrada en la tabla de paginas para que apunte a la pagina correcta, con
modo de SOLO LECTURA, y reinicia la instruccién. Si la pagina se modifica
después, ocurrira otro fallo de pagina que permite al sistema operativo
establecer el bit M y cambiar el modo de la pagina a LECTURA/ESCRITURA

Cuando ocurre un fallo de pagina, el sistema operativo inspecciona todas las
paginas y las divide en 4 categorias con base en los valores actuales de sus
bits Ry M:

Clase 0: no ha sido referenciada, no ha sido modificada.
Clase 1: no ha sido referenciada, ha sido modificada.
Clase 2: ha sido referenciada, no ha sido modificada.
Clase 3: ha sido referenciada, ha sido modificada.

El algoritmo NRU (Not Recently Used, No usada recientemente) elimina una
pagina al azar de la clase de menor numeracién que no esté vacia. En este
algoritmo esta implicita la idea de que es mejor eliminar una pagina
modificada a la que no se haya hecho referencia en al menos un pulso de
reloj (por lo general, unos 20 mseg) que una pagina limpia de uso frecuente.
La principal atraccion del NRU es que es facil de comprender,
moderadamente eficiente de implementar y proporciona un rendimiento que,
aunque no es optimo, puede ser adecuado.

El algoritmo de reemplazo de paginas: Primera en entrar, primera en salir (FIFO)

3.1.

3.2.

El sistema operativo mantiene una lista de todas las paginas actualmente en
memoria, en donde la llegada mas reciente esta en la parte final y la menos
reciente en la parte frontal. En un fallo de pagina, se elimina la pagina que
esta en la parte frontal y la nueva pagina se agrega a la parte final de la lista.

Cuando se aplica en las tiendas, FIFO podria eliminar la gomina para el
bigote, pero también podria eliminar harina, sal o mantequilla. Cuando se
aplica a las computadoras, surge el mismo problema. Por esta razén es raro
que se utilice FIFO en su forma pura.

El algoritmo de reemplazo de paginas: segunda oportunidad

41.

Una modificacién simple al algoritmo FIFO que evita el problema de
descartar una pagina de uso frecuente es inspeccionar el bit R de la pagina
mas antigua. Si es 0, la pagina es antigua y no se ha utilizado, por lo que se
sustituye de inmediato. Si el bit R es 1, el bit se borra, la pagina se pone al
final de la lista de paginas y su tiempo de carga se actualiza, como si
acabara de llegar a la memoria. Después la busqueda continua.

Pagina que se cargo primero

4.2.

Pagina cargada

\ 0 3 7 8 1214 15 18 .~ mas recientemente

(a)

A se considera como
3 s una péagina cargada

7 8 12 14 15 18 20
E ﬂ n nuevamente
()

Figura 3-15. Operacion del algoritmo de la segunda oportunidad. (a) Paginas ordena-
das con base en FIFO. (b) Lista de las paginas si ocurre un fallo de pagina en el tiem-
po 20 y A tiene su bit R activado. Los nimeros encima de las paginas son sus tiempos
de carga.

Suponga que ocurre un fallo de pagina en el tiempo 20. La pagina mas
antigua es A, que llegd en el tiempo 0, cuando se inici6 el proceso. Si el bit R
de A esta desactivado, se desaloja de la memoria, ya sea escribiéndola en el
disco (si esta sucia) o s6lo se abandona (si esta limpia). Por otro lado, si el bit
R esta activado, A se coloca al final de la lista y su “tiempo de carga” se
restablece al tiempo actual (20). El bit R también estd desactivado. La
busqueda de una pagina adecuada continua con B.

5. El algoritmo de reemplazo de paginas: reloj

5.1.

5.2.

Un mejor método seria mantener todos los marcos de pagina en una lista
circular en forma de reloj. La manecilla apunta a la pagina mas antigua.

Cuando ocurre un fallo de pagina, la pagina a la que apunta la manecilla se
inspecciona. Si el bit R es 0, la pagina se desaloja, se inserta la nueva pagina
en el reloj en su lugar y la manecilla se avanza una posicién. Si R es 1, se
borra y la manecilla se avanza a la siguiente pagina. Este proceso se repite
hasta encontrar una pagina con R 0.

A

Cuando ocurre un fallo de pagina,

la pagina a la que apunta la manecilla

se inspecciona. La accion a realizar

D depende del bit R:

R = 0: Desaloja la pagina

R = 1: Desactiva R y avanza la manecilla

G

Figura 3-16. El algontmo de reemplazo de paginas en reloj.

6.

7.

El algoritmo de reemplazo de paginas: menos usadas recientemente (LRU)

6.1.

6.2.

Una buena aproximacién al algoritmo éptimo se basa en la observacion de
que las paginas que se hayan utilizado con frecuencia en las ultimas
instrucciones, tal vez se volveran a usar con frecuencia en las siguientes. Por
el contrario, las paginas que no se hayan utilizado por mucho tiempo
probablemente seguiran sin utilizarse por mucho tiempo mas. Esta idea
sugiere un algoritmo factible: cuando ocurra un fallo de pagina, hay que
descartar la pagina que no se haya utilizado durante la mayor longitud de
tiempo. A esta estrategia se le conoce como paginacion LRU (Least Recently
Used, Menos usadas recientemente).

Para implementar el LRU por completo, es necesario mantener una lista
enlazada de todas las paginas en memoria, con la pagina de uso mas
reciente en la parte frontal y la de uso menos reciente en la parte final. La
dificultad es que la lista debe actualizarse en cada referencia a memoria.
Buscar una pagina en la lista, eliminarla y después pasarla al frente es una
operacion que consume mucho tiempo, incluso mediante hardware

Pagina Pagina Pagina Pagina Pagina

0 1 2 3 o0 1 2 3 o1 2 3 o1 2 3 1 2 3
oj1111 ojop1|1 ojojog1 ojojojo ojoj]o
ojojoj|o 110111 1]0}j0]1 i]j]ojoj]o i]j]ojoj]o
ojojoy|o ojojojo 111]0]1 1111010 1111011
ojojoj|o ojojojfo oOjojoyo0 1]1|1]0 1]1j0]0

(a) (b) (c) (d) (e)
ojojojo Op111(1 Oj1]1¢|0 oOj1]0}0 oj1jo010
1jop11]1 Ojop1|1 0joj1yf0 ojojojo ojojojo
11001 ojojoj}1 [O Vi 1111011 1111010
11{0|01]0 ojojojo 111)11]0 1111010 1]1111]0

f) (9) (h) (i))

Figura 3-17. LRU usando una matriz cuando se hace referencia a las pdginas en el or-
den0,1,2,3,2,1,0,3,2,3.

Simulaciéon de LRU en software

7.1.

Por fortuna, una pequefia modificacién al algoritmo NFU le permite simular el
algoritmo LRU muy bien. La modificacién consta de dos partes. Primero,
cada uno de los contadores se desplaza a la derecha 1 bit antes de agregar
el bit R. Después, el bit R se agrega al bit de mas a la izquierda, en lugar de
sumarse al bit de mas a la derecha.

las paginas 0a 5,
pulso de reloj O

Bits R para Bits R para
las paginas 0 a 5,

pulso de reloj 1

Bits R para
las paginas 0 a 5,
pulso de reloj 2

Bits R para
las paginas 0a 5,
pulso de reloj 3

Bits R para
las paginas 0a 5,
pulso de reloj 4

. . . :
i | | i
i | | i
| i i i
Lo tfoleft] ¢ [r]t[ofof+[o] } [+]*[oft[of+]} []o]ofo[t[o] i [of*]t[o]o]o]
. | ! .
Pagina i i i i
o 10000000 |i | 11000000 |i{ 11100000 |i| 11110000 |i| ot111000 |
. | | .
1‘ 00000000 ‘ | | 10000000 | l | 11000000 | i | 01100000 | i | 10110000 |
i i i i
2 10000000 | | 01000000 | | oo100000 | : | oo100000 | . [10010000 |
! 1 1)
3| 00000000 | : | oooooo00 | : | 10000000 | i | oto00000 | : | ooto0000 |
4‘ 10000000 ‘ : | 11000000 | : | 01100000 | i | 10110000 | : | 01011000 |
5 | 10000000 | I | ot000000 | I | 10100000 | E | 01010000 | : | oot01000 |
(a) | (b) | (€) | (d) | (e)
Figura 3-18. El algoritmo de envejecimiento simula el LRU en software. Aqui se
muestran seis paginas para cinco pulsos de reloj. Los cinco pulsos de reloj se represen-
tan mediante los incisos (a) a (e).
7.2. Este algoritmo difiere del de LRU en dos formas.

7.2.1. Al registrar solo un bit por cada intervalo de tiempo, hemos perdido la
capacidad de diferenciar las referencias anteriores en el intervalo de
reloj de las que ocurrieron después.

7.2.2. La segunda diferencia entre los algoritmos de LRU y envejecimiento
es que en este Ultimo los contadores tienen un numero finito de bits (8
en este ejemplo), lo cual limita su horizonte pasado.

8. El algoritmo de reemplazo de paginas: conjunto de trabajo

8.1.

8.2.

8.3.

En la forma mas pura de paginacion, los procesos inician sin ninguna de sus
paginas en la memoria. Tan pronto como la CPU trata de obtener la primera
instruccién, recibe un fallo de pagina, causando que el sistema operativo
tenga que traer la pagina que contiene la primera instruccién. Por lo general
a este fallo le siguen otros fallos de pagina por las variables globales y la pila.
Después de cierto tiempo, el proceso tiene la mayoria de las paginas que
necesita y se establece para ejecutarse con relativamente pocos fallos de
pagina. A esta estrategia se le conoce como paginacion bajo demanda

Exhiben una localidad de referencia, lo cual significa que durante cualquier
fase de ejecucion el proceso hace referencia so6lo a una fraccion
relativamente pequefa de sus paginas.

El conjunto de paginas que utiliza un proceso en un momento dado se
conoce como su conjunto de trabajo. Si todo el conjunto de trabajo esta en

8.4.

8.5.

memoria, el proceso se ejecutara sin producir muchos fallos hasta que
avance a otra fase de ejecucion. Si la memoria disponible es demasiado
pequeia como para contener todo el conjunto de trabajo completo, el
proceso producira muchos fallos de pagina y se ejecutara lentamente, ya que
para ejecutar una instruccién se requieren unos cuantos nanosegundos vy
para leer una pagina del disco se requieren en general 10 milisegundos

Se dice que un programa que produce fallos de pagina cada pocas
instrucciones esta sobrepaginando (thrashing)

Por lo tanto, muchos sistemas de paginacion tratan de llevar la cuenta del
conjunto de trabajo de cada proceso y se aseguran que esté en memoria
antes de permitir que el proceso se ejecute. Este método se conoce como
modelo del conjunto de trabajo (Denning, 1970). Esta disefiado para reducir
en gran parte la proporcién de fallos de pagina. Al proceso de cargar las
paginas antes de permitir que se ejecuten los procesos también se le conoce
como prepaginacion.

w(k.t)

k

Figura 3-19. El conjunto de trabajo es el conjunto de paginas utilizadas por las & re-
ferencias a memoria mas recientes. La funcion wik, 1) es el tamafio del conjunto de tra-
bajo en el tiempo 1.

8.6.

8.7.

8.8.

Para implementar el modelo del conjunto de trabajo, es necesario que el
sistema operativo lleve la cuenta de cuales paginas estan en el conjunto de
trabajo. Tener esta informacion también nos conduce de inmediato a un
posible algoritmo de reemplazo de paginas: cuando ocurra un fallo de pagina,
hay que buscar una pagina que no se encuentre en el conjunto de trabajo y
desalojar la.

Para implementar cualquier algoritmo de conjunto de trabajo se debe elegir
por adelantado cierto valor de k. Una vez que se ha seleccionado cierto valor,
después de cada referencia a memoria, el conjunto de paginas utilizadas por
las k referencias a memoria mas recientes se determina en forma unica.

En teoria, en un fallo de pagina, el contenido del registro de desplazamiento
se podria extraer y ordenar; las paginas duplicadas entonces pueden ser
eliminadas. El resultado seria el conjunto de trabajo. Sin embargo, el proceso
de mantener el registro de desplazamiento y procesarlo en un fallo de pagina
seria en extremo costoso, por lo que esta técnica nunca se utiliza.

8.9.

8.10.

8.11.

8.12.

8.13.

Por ejemplo, en vez de definir el conjunto de trabajo como las paginas
utilizadas durante los 10 millones de referencias a memoria anteriores,
podemos definirlo como el conjunto de paginas utilizadas durante los ultimos
100 milisegundos de tiempo de ejecucion. En la practica, dicha definicion es
igual de conveniente y es mucho mas facil trabajar con ella.
La cantidad de tiempo de la CPU que ha utilizado en realidad un proceso
desde que empezd se conoce comunmente como su tiempo virtual actual.
Con esta aproximacion, el conjunto de trabajo de un proceso es el conjunto
de paginas a las que se ha hecho referencia durante los ultimos 1 segundos
de tiempo virtual.
[2204] Tiempo virtual actual
Informacién acerca{ . Bit R (referenciada)
de una pagina Zos4 | 14
2003 [1
Tiempo de
Gltimo uso —F——==1380 L1 Explora todas las paginas examinando el bit R:
I si(R==1)
Pagina referenciada 1213 0 establece el tiempo de dltimo uso al
2 ——==—2 : :
durante este pulso 5014 |1 tiempo virtual actual
2020 |1 5i (R == 0y edad > 1)
elimina esta pagina
Pagina no referenciada | 2032 1 si(R==0y edad <1)
durante este pulso 1620 O recuerda el menor tiempo

Tabla de paginas

Figura 3-20. El algoritmo del conjunto de trabajo.

, se examina el bit R. Si es 1, el tiempo virtual actual se escribe en el campo
Tiempo de ultimo uso en la tabla de paginas, indicando que la pagina estaba
en uso al momento en que ocurrié el fallo de pagina. Como se hizo referencia
a la pagina durante el pulso de reloj actual, es evidente que esta en el
conjunto de trabajo y no es candidata para la eliminacion

Si R es 0, no se ha hecho referencia a la pagina durante el pulso de reloj
actual y puede ser candidata para la eliminacion. Para ver si debe o no
eliminarse, se calcula su edad (el tiempo virtual actual menos su Tiempo de
ultimo uso) y se compara con 1. Si la edad es mayor que T, la pagina ya no se
encuentra en el conjunto de trabajo y la nueva pagina la sustituye. La
exploracion continta actualizando las entradas restantes.

No obstante, si R es 0 pero la edad es menor o igual que T1, la pagina esta
todavia en el conjunto de trabajo. La pagina se reserva temporalmente, pero
se apunta la pagina con la mayor edad (el menor valor de Tiempo de ultimo
uso). Si toda la tabla completa se explora sin encontrar un candidato para
desalojar, eso significa que todas las paginas estan en el conjunto de trabajo.
En ese caso, si se encontraron una o mas paginas con R 0, se desaloja la
mas antigua

9.

El algoritmo de reemplazo de paginas WSClock

9.1.

9.2.

9.3.

9.4.

9.5.

La estructura de datos necesaria es una lista circular de marcos de pagina,
como en el algoritmo de reloj. Al principio, esta lista esta vacia. Cuando se
carga la primera pagina, se agrega a la lista. A medida que se agregan mas
paginas, pasan a la lista para formar un anillo. Cada entrada contiene el
campo Tiempo de ultimo uso del algoritmo basico del conjunto de trabajo, asi
como el bit R (mostrado) y el bit M (no mostrado).

Al igual que con el algoritmo de reloj, en cada fallo de pagina se examina
primero la pagina a la que apunta la manecilla. Si el bit R es 1, la pagina se
ha utilizado durante el pulso actual, por lo que no es candidata ideal para la
eliminacion. Después el bit R se establece en 0, la manecilla se avanza a la
siguiente pagina y se repite el algoritmo para esa pagina. Si la pagina a la
que apunta la manecilla tiene R 0. Si la edad es mayor que Ty la pagina esta
limpia, significa que no se encuentra en el conjunto de trabajo y existe una
copia valida en el disco.

¢ Qué ocurre si la manecilla llega otra vez a su punto inicial?
Hay dos casos a considerar:

1. Se ha planificado por lo menos una escritura.

2. No se han planificado escrituras.

En el primer caso, la manecilla sélo sigue moviéndose, buscando una pagina
limpia. Como se han planificado una o mas escrituras, en algin momento se
completara alguna escritura y su pagina se marcara como limpia. La primera
pagina limpia que se encuentre se desaloja.

En el segundo caso, todas las paginas estan en el conjunto de trabajo, de
otra manera se hubiera planificado por lo menos una escritura. Sin
informacién adicional, lo mas simple por hacer es reclamar cualquier pagina
limpia y usarla. La ubicacion de una pagina limpia podria rastrearse durante
el barrido. Si no existen paginas limpias, entonces se selecciona la pagina
actual como la victima y se escribe de vuelta al disco.

Tiempo virtual actual
16200 16200

\
1980 |1 |2014i1| 1980 |1 |2014i0|

1213]0] f 1213]0]

Tiempo de
ultimo uso

(a) (b)

Bit R

1620][0 1620]0

2084[1 2032]1 20841 20321

2003[1 2020]1 20031 / 2020][1

1980 |1 20140 1980 |1 20140

1213]0 2204[1

Mueva pagina

(c) (d)

Figura 3-21. Operacion del algoritmo WSClock. (a) v (b) dan un ejemplo de lo que
ocurre cuando R = 1. (c) y (d) dan un ejemplo de cuando R = 0.

10. Resumen de los algoritmos de reemplazo de pagina

Algoritmo Comentario
Optimo Mo se puede implementar, pero es (til como punto de comparacion
NAU (Mo usadas recientemente) Una aproximacion muy burda del LRU

FIFQ (primera en entrar, primera en salir) | Podria descartar paginas importantes

Segunda oportunidad Gran mejora sobre FIFO

Reloj Realista

LRU {menos usadas recientemente) Excelente, pero dificil de implementar con exactitud
NFU (no utilizadas frecuentemente) Aproximacion a LRU bastante burda
Envejecimiento Algoritmo eficiente que se aproxima bien a LRU
Conjunto de trabajo Muy costoso de implementar

WSClock Algoritmo eficientemente bueno

10.1.

10.2.

10.3.

Figura 3-22. Algoritmos de reemplazo de paginas descritos en el texto.

El algoritmo 6ptimo desaloja la pagina a la que se hara referencia en el futuro
mas lejano. Por desgracia, no hay forma de determinar cual pagina es, por lo
que en la practica no se puede utilizar este algoritmo. Sin embargo, es util
como punto de comparacion para los demas algoritmos.

El algoritmo NRU divide las paginas en cuatro clases dependiendo del estado
de los bits R y M. Se selecciona una pagina aleatoria de la clase con menor
numeracion. Este algoritmo es facil de implementar, pero muy burdo. Existen
mejores.

FIFO lleva la cuenta del orden en el que se cargaron las paginas en memoria
al mantenerlas en una lista enlazada. Eliminar la pagina mas antigua se
vuelve entonces un proceso trivial, pero como esa pagina podria estar
todavia en uso, FIFO es una mala opcion.

10.4.

10.5.

10.6.

10.7.

El algoritmo de segunda oportunidad es una modificacion de FIFO que
comprueba si hay una pagina en uso antes de eliminarla. Si lo esta, la pagina
se reserva. Esta modificacion mejora de manera considerable el rendimiento.
El algoritmo de reloj es simplemente una implementacion distinta del
algoritmo de segunda oportunidad. Tiene las mismas propiedades de
rendimiento, pero toma un poco menos de tiempo para ejecutar el algoritmo.

LRU es un algoritmo excelente, pero no se puede implementar sin hardware
especial. NFU es un burdo intento por aproximarse a LRU; sin embargo, el
algoritmo de envejecimiento es una mucho mejor aproximacion a LRU y se
puede implementar con eficiencia. Es una buena opcion.

Los ultimos dos algoritmos utilizan el conjunto de trabajo. El algoritmo del
conjunto de trabajo ofrece un rendimiento razonable, pero es un poco
costoso de implementar. WSClock es una variante que no sélo da un buen
rendimiento, sino que también es eficiente al implementar

Con todo, los dos mejores algoritmos son el de envejecimiento y WSClock.
Se basan en LRU y el conjunto de trabajo, respectivamente. Ambos dan un
buen rendimiento en la paginacion y pueden implementarse con eficiencia.
Existen varios algoritmos mas, pero estos dos son tal vez los mas
importantes en la practica.

e CUESTIONES DE DISENO PARA LOS SISTEMAS DE PAGINACION

1. Politicas de asignacion local contra las de asignacion global

1.1.

En general, los algoritmos globales funcionan mejor, en especial cuando el
tamario del conjunto de trabajo puede variar durante el tiempo de vida de un
proceso. Si se utiliza un algoritmo local y el conjunto de trabajo crece, se
producira una sobrepaginacion, aun cuando haya muchos marcos de pagina
libres. Si el conjunto de trabajo se reduce, los algoritmos locales desperdician
memoria.

Edad

A0 10 AO AO
Al 7 Al Al
A2 5 A2 A2
A3 4 A3 A3
A4 6 Ad Ad
A5 3 Ab
BO 9 BO BO
B1 4 B1 B1
B2 6 B2 B2
B3 2 B3
B4 5 B4 B4
B5 6 B5 B5
B6 12 B6 B6
Ci 3 Ci Ci
c2 5 [C2
C3 6 C3 C3
(a) (b) (c)

Figura 3-23. Comparacion entre el reemplazo de paginas local y el global. (a) Confi-
guracion original. (b) Reemplazo de paginas local. (c) Reemplazo de paginas global.

1.2.

1.3.

Si se utiliza un algoritmo global, es posible empezar cada proceso con cierto
numero de paginas proporcional al tamafio del proceso, pero la asignacion se
tiene que actualizar dinamicamente a medida que se ejecuten los procesos.
Una manera de administrar la asignacién es utilizando el algoritmo PFF
(Page Fault Frequency, Frecuencia de fallo de paginas). Este algoritmo indica
cuando se debe incrementar o decrementar la asignacion de paginas a un
proceso, pero no dice nada acerca de cual pagina se debe sustituir en un
fallo. Sélo controla el tamafio del conjunto de asignacion.

Fallos de pagina/seg

Numero de marcos de pagina asignados

Figura 3-24. Proporcion de fallos de pagina como una funcion del nimero de marcos
de pagina asignados.

La linea punteada marcada como A corresponde a una proporciéon de fallos
de pagina que es demasiado alta, por lo que el proceso que emitié el fallo
recibe mas marcos de pagina para reducir la proporcion de fallos. La linea
punteada marcada como B corresponde a una proporcién de fallos de pagina
tan baja que podemos suponer que el proceso tiene demasiada memoria. En
este caso se le pueden quitar marcos de pagina.

Control de carga

2.1.

2.2.

2.3.

2.4.

Aun con el mejor algoritmo de reemplazo de paginas y una asignacion global
6ptima de marcos de pagina a los procesos, puede ocurrir que el sistema se
sobrepagine.

Un sintoma de esta situacién es que el algoritmo PFF indica que algunos
procesos necesitan mas memoria, pero ningun proceso necesita menos
memoria. En este caso no hay forma de proporcionar mas memoria a esos
procesos que la necesitan sin lastimar a algun otro proceso. La unica
solucion real es deshacerse temporalmente de algunos procesos.

El proceso de intercambiar procesos para liberar la carga en la memoria es
semejante a la planificacion de dos niveles, donde ciertos procesos se
colocan en disco y se utiliza un planificador de corto plazo para planificar los
procesos restantes. Peridodicamente, ciertos procesos se traen del disco y
otros se intercambian hacia el mismo.

Cuando el numero de procesos en la memoria principal es demasiado bajo,
la CPU puede estar inactiva durante largos periodos. Esta consideracion
sostiene que no sélo se debe tomar en cuenta el tamafio del proceso y la

proporcion de paginacion al decidir qué proceso se debe intercambiar, sino
también sus caracteristicas, tal como si esta ligado a la CPU o a la E/S, asi
como las caracteristicas que tienen los procesos restantes.

Tamano de pagina

3.1.

3.2.

3.3.

3.4.

El tamafio de pagina es un parametro que a menudo el sistema operativo
puede elegir. Incluso si el hardware se ha disefiado

Para determinar el mejor tamafio de pagina se requiere balancear varios
factores competitivos. Como resultado, no hay un tamafo 6ptimo en general.
Para empezar, hay dos factores que estan a favor de un tamano de pagina
pequeno. Un segmento de texto, datos o pila elegido al azar no llenara un
numero integral de paginas. En promedio, la mitad de la pagina final estara
vacia. El espacio adicional en esa pagina se desperdicia. A este desperdicio
se le conoce como fragmentacion interna.

En general, un tamafo de pagina grande hara que haya una parte mas
grande no utilizada del programa que un tamafo de pagina pequefio. Por
otro lado, tener paginas pequefias implica que los programas necesitaran
muchas paginas, lo que sugiere la necesidad de una tabla de paginas
grande.

sobrecarga = se/p + p/2

El primer término (tamafio de la tabla de paginas) es grande cuando el
tamafo de pagina es pequeno. El segundo término (fragmentacién interna)
es grande cuando el tamafo de pagina es grande. El valor 6ptimo debe estar
entre estos dos.

Espacios separados de instrucciones y de datos

41.

La mayor parte de las computadoras tienen un solo espacio de direcciones
que contiene tanto programas como datos. Si este espacio de direcciones es
lo bastante grande, todo funciona bien. No obstante, a menudo es demasiado
pequeno, lo cual obliga a los programadores a pararse de cabeza tratando de
ajustar todo en el espacio de direcciones.

Un solo espacio

de direcciones Espacio | Espacio D
232 032
} Pagina no
Datos usada
Datos
KXt iy
Programa Programa
0 0
(a) (b)

Figura 3-25. (a) Un espacio de direcciones. (b) Espacios [y D separados.

4.2.

Una solucién utilizada es tener espacios de direcciones separados para las
instrucciones (texto del programa) y los datos, llamados espacio | y espacio
D. Tener espacios | y D separados no introduce ninguna complicacion
especial y si duplica el espacio de direcciones disponible

5. Paginas compartidas

5.1.

5.2.

5.3.

5.4.

En un sistema de multiprogramacién grande, es comun que varios usuarios
ejecuten el mismo programa a la vez. Evidentemente es mas eficiente
compartir las paginas para evitar tener dos copias de la misma pagina en
memoria al mismo tiempo. Un problema es que no todas las paginas se
pueden compartir. En especial, sélo pueden compartirse las paginas que son
de sélo lectura como el texto del programa, pero las paginas de datos no.

Si se admiten espacios | y D separados, es relativamente simple compartir
los programas al hacer que dos o mas procesos utilicen la misma tabla de
paginas para su espacio | pero distintas tablas de paginas para sus espacios
D.

Ay

-

Tabla de procesos

Programa Datos 1 Datos 2
L J

Tablas de paginas

Figura 3-26. Dos procesos comparten el mismo programa compartiendo su tabla de
paginas.

Suponga que los procesos A y B estan ejecutando el editor y comparten sus
paginas. Si el planificador decide eliminar A de la memoria, desalojando
todas sus paginas y llenando los marcos de pagina vacios con otro
programa, causara que B genere un gran numero de fallos de pagina para
traerlas de vuelta.

Compartir datos es mas complicado que compartir cédigo, pero no imposible.
En especial, en UNIX después de una llamada al sistema fork, el padre y el
hijo tienen que compartir tanto el texto del programa como el texto de los
datos. En un sistema paginado, lo que se hace a menudo es dar a cada uno
de estos procesos su propia tabla de paginas y hacer que ambos apunten al
mismo conjunto de paginas. Asi, no se realiza una copia de paginas al
momento de la operacion fork. Sin embargo, todas las paginas de datos son
asociadas en ambos procesos de SOLO LECTURA (READ ONLY).

5.5.

Tan pronto como cualquiera de los procesos actualiza una palabra de
memoria, la violacion de la proteccion de solo lectura produce un trap al
sistema operativo. Después se hace una copia de la pagina ofensora, para
que cada proceso tenga ahora su propia copia privada. Ambas copias se
establecen ahora como LECTURA-ESCRITURA (READ-WRITE), para que
las siguientes operaciones de escritura en cualquiera de las copias continten
sin lanzar un trap. Esta estrategia significa que aquellas paginas que nunca
se modifican (incluyendo todas las del programa) no se necesitan copiar.
Este método, conocido como copiar en escritura, mejora el rendimiento al
reducir el copiado.

Bibliotecas compartidas

6.1.

6.2.

6.3.

6.4.

6.5.

En los sistemas modernos hay muchas bibliotecas extensas utilizadas por
muchos procesos, por ejemplo, la biblioteca que maneja el dialogo para
explorar por archivos que se desean abrir y varias bibliotecas de graficos. Si
se enlazaran en forma estatica estas bibliotecas con cada programa
ejecutable en el disco se agrandarian ain mas.

En vez de ello, una técnica comun es utilizar bibliotecas compartidas (que se
conocen como DLLs o Bibliotecas de enlaces dinamicos en Windows). Para
aclarar la idea de una biblioteca compartida, primero considere el
enlazamiento tradicional. Cuando un programa se enlaza, se nombra uno o
mas archivos de cédigo objeto y posiblemente algunas bibliotecas en el
comando para el enlazador

(objeto) en el directorio actual y después explora dos bibliotecas, /usr/
lib/libc.a y /usr/lib/libm.a. Las funciones a las que se llame en los archivos
objeto pero que no estén ahi (por ejemplo, printf) se conocen como externas
indefinidas y se buscan en las bibliotecas. Si se encuentran, se incluyen en el
binario ejecutable. Cualquier funcién a la que llamen pero que no esté aun
presente también se convierte en externa indefinida.Por ejemplo, printf
necesita a write, por lo que si write no esta ya incluida, el enlazador la
buscara y la incluird cuando la encuentre.

Cuando un programa se vincula con bibliotecas compartidas (que son
ligeramente diferentes a las estaticas), en vez de incluir la funcién a la que se
llamé, el vinculador incluye una pequefia rutina auxiliar que se enlaza a la
funcién llamada en tiempo de ejecucion. Dependiendo del sistema y los
detalles de configuracion, las bibliotecas compartidas se cargan cuando se
carga el programa o cuando las funciones en ellas se llaman por primera vez.
Observe que cuando se carga o utiliza una biblioteca compartida, no se lee
toda la biblioteca en memoria de un solo golpe. Se pagina una pagina a la
vez segun sea necesario, de manera que las funciones que no sean
llamadas no se carguen en la RAM. Ademas de reducir el tamafio de los
archivos ejecutables y ahorrar espacio en memoria, las bibliotecas
compartidas tienen otra ventaja: si una funcion en una biblioteca compartida
se actualiza para eliminar un error, no es necesario recompilar los programas
que la llaman, pues los antiguos binarios siguen funcionando.

6.6.

36K

12K

Proceso 1 RAM Proceso 2

Figura 3-27. Una biblioteca compartida utilizada por dos procesos.

Una mejor solucién es compilar las bibliotecas compartidas con una bandera
de compilador especial, para indicar al compilador que no debe producir
instrucciones que utilicen direcciones absolutas. En vez de ello, sélo se
utilizan instrucciones con direcciones relativas. Al evitar direcciones
absolutas, el problema se puede resolver. El cédigo que utiliza soélo
desplazamientos relativos se conoce como codigo independiente de la
posicion.

Archivos asociados

7.1.

7.2.

7.3.

Las bibliotecas compartidas son realmente un caso de una herramienta mas
general, conocida como archivos asociados a memoria. La idea aqui es que
un proceso puede emitir una llamada al sistema para asociar un archivo a
una porcion de su espacio de direcciones virtuales.

Los archivos asociados proporcionan un modelo alternativo para la E/S. En
vez de realizar lecturas y escrituras, el archivo se puede accesar como un
gran arreglo de caracteres en la memoria.

Si dos 0 mas procesos se asocian al mismo archivo y al mismo tiempo, se
pueden comunicar a través de la memoria compartida. Las escrituras
realizadas por un proceso en la memoria compartida son inmediatamente
visibles cuando el otro lee de la parte de su espacio de direcciones virtuales
asociado al archivo. Por lo tanto, este mecanismo proporciona un canal con
un gran ancho de banda entre los procesos, y a menudo se utiliza como tal.

Politica de limpieza

8.1.

La paginacién funciona mejor cuando hay muchos marcos de pagina libres
gue se pueden reclamar al momento en que ocurran fallos de pagina. Si cada
marco de pagina esta lleno y ademas modificado, antes de que se pueda
traer una nueva pagina se debe escribir una pagina anterior en el disco.

9.

8.2.

8.3.

Para asegurar una provision abundante de marcos de pagina libres, muchos
sistemas de paginacion tienen un proceso en segundo plano conocido como
demonio de paginacion, que esta inactivo la mayor parte del tiempo pero se
despierta en forma periddica para inspeccionar el estado de la memoria. Si
hay muy pocos marcos de pagina libres, el demonio de paginacién empieza a
seleccionar paginas para desalojarlas mediante cierto algoritmo de
reemplazo de paginas. Si estas paginas han sido modificadas después de
haberse cargado, se escriben en el disco.

Una manera de implementar esta politica de limpieza es mediante un reloj
con dos manecillas. La manecilla principal es controlada por el demonio de
paginacion. Cuando apunta a una pagina sucia, esa pagina se escribe de
vuelta al disco y la manecilla principal se avanza. Cuando apunta a una
pagina limpia, sélo se avanza. La manecilla secundaria se utiliza para
reemplazar paginas, como en el algoritmo de reloj estandar. Sélo que ahora,
la probabilidad de que la manecilla secundaria llegue a una péagina limpia se
incrementa debido al trabajo del demonio de paginacion.

Interfaz de memoria virtual

9.1.

9.2.

Una razén por la que se otorga a los programadores el control sobre su mapa
de memoria es para permitir que dos 0 mas procesos compartan la misma
memoria. Si los programadores pueden nombrar regiones de su memoria, tal
vez sea posible para un proceso dar a otro proceso el nombre de una region
de memoria, de manera que el proceso también pueda asociarla. Con dos (o
mas) procesos compartiendo las mismas paginas, la comparticion con mucho
ancho de banda se hace posible: un proceso escribe en la memoria
compartida y otro proceso lee de ella.

Otra técnica mas de administracién avanzada de memoria es la memoria
compartida distribuida. La idea aqui es permitir que varios procesos
compartan a través de la red un conjunto de paginas, posiblemente (pero no
es necesario) como un solo espacio de direcciones lineal compartido.
Cuando un proceso hace referencia a una pagina que no esta asociada,
obtiene un fallo de pagina. El manejador de fallos de pagina, que puede estar
en espacio de kernel o de usuario, localiza entonces la maquina que contiene
la pagina y le envia un mensaje pidiéndole que la desasocie y la envie a
través de la red. Cuando llega la pagina, se asocia y la instruccion que fallé
se reinicia.

CUESTIONES DE IMPLEMENTACION

Los implementadores de los sistemas de memoria virtual tienen que elegir entre los
principales algoritmos tedricos: entre el algoritmo de segunda oportunidad y el de
envejecimiento, entre la asignacion de paginas local o global, y entre la paginacion
bajo demanda o la prepaginacion.

1.

Participacién del sistema operativo en la paginacion

1.1.

1.2.

1.3.

1.4.

1.5.

Hay cuatro ocasiones en las que el sistema operativo tiene que realizar
trabajo relacionado con la paginacién: al crear un proceso, al ejecutar un
proceso, al ocurrir un fallo de pagina y al terminar un proceso.

Cuando se crea un proceso en un sistema de paginaciéon, el sistema
operativo tiene que determinar qué tan grandes seran el programa y los
datos (al principio), y crear una tabla de paginas para ellos. Se debe asignar
espacio en memoria para la tabla de paginas y se tiene que inicializar.
Ademas, se debe asignar espacio en el area de intercambio en el disco, para
gue cuando se intercambie una pagina, tenga un lugar a donde ir. Algunos
sistemas paginan el texto del programa directamente del archivo ejecutable,
con lo cual se ahorra espacio en disco y tiempo de inicializacion. Por ultimo,
la informacién acerca de la tabla de paginas y el area de intercambio en el
disco se debe registrar en la tabla de procesos.

Cuando un proceso se planifica para ejecucién, la MMU se tiene que
restablecer para el nuevo proceso y el TLB se vacia para deshacerse de los
restos del proceso que se estaba ejecutando antes. La tabla de paginas del
nuevo proceso se tiene que actualizar, por lo general copiandola o mediante
un apuntador a éste hacia cierto(s) registro(s) de hardware.

Cuando ocurre un fallo de pagina, el sistema operativo tiene que leer los
registros de hardware para determinar cual direccion virtual produjo el fallo.
Con base en esta informacion debe calcu lar qué pagina se necesita y
localizarla en el disco. Después debe buscar un marco de pagina disponible
para colocar la nueva pagina, desalojando alguna pagina anterior si es
necesario. Luego debe leer la pagina necesaria y colocarla en el marco de
paginas. Por ultimo, debe respaldar el contador de programa para hacer que
apunte a la instruccion que fallé y dejar que la instruccion se ejecute de
nuevo.

Cuando un proceso termina, el sistema operativo debe liberar su tabla de
paginas, sus paginas y el espacio en disco que ocupan las paginas cuando
estan en disco. Si alguna de las paginas estan compartidas con otros
procesos, las paginas en memoria y en disco solo pueden liberarse cuando el
ultimo proceso que las utilice haya terminado.

Manejo de fallos de pagina

2.1.

2.2.

1. El hardware hace un trap al kernel, guardando el contador de programa en
la pila. En la mayor parte de las maquinas, se guarda cierta informacion
acerca del estado de la instruccion actual en registros especiales de la CPU.

2. Se inicia una rutina en cédigo ensamblador para guardar los registros
generales y demas informacion volatil, para evitar que el sistema operativo la
destruya. Esta rutina llama al sistema operativo como un procedimiento.

2.3.

24.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

3. El sistema operativo descubre que ha ocurrido un fallo de pagina y trata de
descubrir cual pagina virtual se necesita. A menudo, uno de los registros de
hardware contiene esta informacion. De no ser asi, el sistema operativo debe
obtener el contador de programa, obtener la instruccion y analizarla en
software para averiguar lo que estaba haciendo cuando ocurrio el fallo.

4. Una vez que se conoce la direccién virtual que produjo el fallo, el sistema
comprueba si esta direccidn es valida y si la proteccion es consistente con el
acceso. De no ser asi, el proceso recibe una sefal o es eliminado. Si la
direccion es valida y no ha ocurrido un fallo de pagina, el sistema comprueba
si hay un marco de pagina disponible. Si no hay marcos disponibles, se
ejecuta el algoritmo de reemplazo de paginas para seleccionar una victima.

5. Si el marco de pagina seleccionado esta sucio, la pagina se planifica para
transferirla al disco y se realiza una conmutacion de contexto, suspendiendo
el proceso fallido y dejando que se ejecute otro hasta que se haya
completado la transferencia al disco. En cualquier caso, el marco se marca
como ocupado para evitar que se utilice para otro propésito.

6. Tan pronto como el marco de pagina esté limpio (ya sea de inmediato, o
después de escribirlo en el disco), el sistema operativo busca la direccién de
disco en donde se encuentra la pagina necesaria, y planifica una operacion
de disco para llevarla a memoria. Mientras se esta cargando la pagina, el
proceso fallido sigue suspendido y se ejecuta otro proceso de usuario, si hay
uno disponible.

7. Cuando la interrupcion de disco indica que la pagina ha llegado, las tablas
de paginas se actualizan para reflejar su posicién y el marco se marca como
en estado normal.

8. La instruccion fallida se respalda al estado en que tenia cuando empezo, y
el contador de programa se restablece para apuntar a esa instruccion.

9. El proceso fallido se planifica y el sistema operativo regresa a la rutina (en
lenguaje ensamblador) que lo llamé.

10. Esta rutina recarga los registros y demas informacion de estado,
regresando al espacio de usuario para continuar la ejecucién, como si no
hubiera ocurrido el fallo.

3. Respaldo de instruccion

3.1.

Cuando un programa hace referencia a una pagina que no esta en memoria,
la instruccion que produjo el fallo se detiene parcialmente y ocurre un trap al
sistema operativo. Una vez que el sistema operativo obtiene la pagina
necesaria, debe reiniciar la instruccion que produjo el trap. Es mas facil decir
esto que hacerlo.

3.2.

Por fortuna, en algunas maquinas los disefadores de la CPU proporcionan
una solucion, por lo general en la forma de un registro interno oculto, en el
gque se copia el contador de programa justo antes de ejecutar cada
instruccién. Estas maquinas también pueden tener un segundo registro que
indique cuadles registros se han ya autoincrementado o autodecrementado y
por cuanto. Dada esta informacién, el sistema operativo puede deshacer sin
ambigiedad todos los efectos de la instruccion fallida, de manera que se
pueda reiniciar.

Bloqueo de paginas en memoria

41.

4.2.

Considere un proceso que acaba de emitir una llamada al sistema para leer
algun archivo o dispositivo y colocarlo en un bufer dentro de su espacio de
direcciones. Mientras espera a que se complete la E/S, el proceso se
suspende y se permite a otro proceso ejecutarse. Este otro proceso recibe un
fallo de pagina.

Una solucién a este problema es bloquear las paginas involucradas en
operaciones de E/S en memoria, de manera que no se eliminen. Bloquear
una pagina se conoce a menudo como fijada (pinning) en la memoria. Otra
solucion es enviar todas las operaciones de E/S a buferes del kernel y
después copiar los datos a las paginas de usuario.

Almaceén de respaldo

5.1.

5.2.

5.3.

El algoritmo mas simple para asignar espacio de pagina en el disco es tener
una particion de intercambio especial en el disco o aun mejor es tenerla en
un disco separado del sistema operativo. Esta particién no tiene un sistema
de archivos normal, lo cual elimina la sobrecarga de convertir
desplazamientos en archivos a direcciones de bloque. En vez de ello, se
utilizan numeros de bloque relativos al inicio de la particion.

Con cada proceso esta asociada la direccion de disco de su area de
intercambio; es decir, en qué parte de la particién de intercambio se mantiene
su imagen. Esta informacion se mantiene en la tabla de procesos. El calculo
la direccion en la que se va a escribir una pagina es simple: sélo se suma el
desplazamiento de la pagina dentro del espacio de direcciones virtual al inicio
del area de intercambio.

Los procesos pueden incrementar su tamafio antes de empezar. Aunque el
texto del programa por lo general es fijo, el area de los datos puede crecer
algunas veces, y la pila siempre puede crecer. En consecuencia, podria ser
mejor reservar areas de intercambio separadas para el texto, los datos y la
pila, permitiendo que cada una de estas areas consista de mas de un trozo
en el disco

5.4. El otro extremo es no asignar nada por adelantado y asignar espacio en el
disco para cada pagina cuando ésta se intercambie hacia fuera de la
memoria y desasignarlo cuando se vuelva a intercambiar hacia la memoria.

Memoria principal Disco Memoria principal Disco
T
Péaginas Pages N~
II] ea de intercamblo Area de

Tabla de

2 &

a =

5 o N
=R

w o

(a) (b)

Figura 3-29. (a) Paginacion a un drea de intercambio estatica. (b) Respaldo de pagi-
nas en forma dinamica.

Separacién de politica y mecanismo

1. Un manejador de la MMU de bajo nivel.
2. Un manejador de fallos de pagina que forma parte del kernel.
3. Un paginador externo que se ejecuta en espacio de usuario

6.1. Todos los detalles acerca del funcionamiento de la MMU estan encapsulados
en el manejador de la MMU, que es codigo dependiente de la maquina y
tiene que volver a escribirse para cada nueva plataforma a la que se porte el
sistema operativo. El manejador de fallos de pagina es coédigo independiente
de la maquina y contiene la mayor parte del mecanismo para la paginacion.
La politica se determina en gran parte mediante el paginador externo, que se
ejecuta como un proceso de usuario.

3. Pagina que se requiere

/\ Disco

Memoria principal

: Proceso
Espacio de usuario Paginador
de usuario externo / 4.Llega
2. Pagina la pagina
necesaria
[[1. Fallo ‘L
de pagina
Espacio
de kernel
la pagina

Figura 3-30. Manejo de fallos de pagina con un paginador externo.

6.2. El problema principal es que el paginador externo no tiene acceso a los bits
R y M de todas las paginas. Estos bits desempefian un papel en muchos de
los algoritmos de paginacion. Por ende, se necesita algun mecanismo para
pasar esta informacion al paginador externo o el algoritmo de reemplazo de
paginas debe ir en el kernel.

6.3. La principal ventaja de esta implementacion es que se obtiene un codigo mas
modular y una mayor flexibilidad. La principal desventaja es la sobrecarga
adicional de cruzar el limite entre usuario y kernel varias veces, y la

sobrecarga de los diversos mensajes que se envian entre las partes del
sistema.

SEGMENTACION

Un compilador tiene muchas tablas que se generan a medida que procede la
compilacion, las cuales posiblemente incluyen:

1. El texto del cddigo fuente que se guarda para el listado impreso (en sistemas de
procesamiento por lotes).

2. La tabla de simbolos, que contiene los nombres y atributos de las variables.

3. La tabla que contiene todas las constantes enteras y de punto flotante utilizadas.
4. El arbol de analisis sintactico, que contiene el analisis sintactico del programa.

5. La pila utilizada para las llamadas a procedimientos dentro del compilador

Cada una de las primeras cuatro tablas crece en forma continua a medida que

procede la compilacion. La ultima crece y se reduce de maneras impredecibles
durante la compilacion.

Espacio de direcciones virtuales

Pila de llamadas *

} Libre

Espacio de direcciones . P . .
asignado al arbol de Arbol de analisis Espacio que utiliza

andlisis sintactico sintactico actualmente el arbol
de analisis sintactico

Tabla de constamesf

Texto de cadigo
fuente *

: La tabla de simbolos se
Tabla de ha topado con la tabla
simbolos de texto del caédigo fuente

Figura 3-31. En un espacio de direcciones unidimensional con tablas que aumentan
de tamafio, una tabla puede toparse con otra.

Lo que se necesita realmente es una forma de liberar al programador de tener que
administrar las tablas en expansion y contraccion, de la misma forma que la
memoria virtual elimina la preocupacién de tener que organizar el programa en
sobrepuestos.

Una solucién simple y en extremado general es proporcionar la maquina con
muchos espacios de direcciones por completo independientes, llamados segmentos.
Cada segmento consiste en una secuencia lineal de direcciones, desde 0 hasta
cierto valor maximo. La longitud de cada segmento puede ser cualquier valor desde
0 hasta el maximo permitido.

20K
16K |- 16K
12K~ 12K 12K - 12K
Tabla de
simbolos
8K [~ 8K [8K |- Arbol de 8K (-
analisis
Texto sintactico Pila de
fuente llamadas
4K |- 4K 4K = 4K |-
Constantes
0K 0K 0K 0K 0K
Segmento Segmento Segmento Segmento Segmento
0 1 2 3 4
Figura 3-32. Una memoria segmentada permite que cada tabla crezca o se reduzca de
manera independiente a las otras tablas.
1. Implementacion de segmentacion pura
Consideracion Paginacion Segmentacion

¢ Necesita el programador estar consciente
de que se esta utilizando esta técnica? No Si

¢ Cuantos espacios de direcciones

lineales hay? 1 Muchos

¢ Puede el espacio de direcciones total

exceder al tamano de la memaria fisica? Si Si

¢ Pueden los procedimientos y los datos
diferenciarse y protegerse por separado? No Si

¢ Pueden las tablas cuyo tamano fluctua
acomodarse con facilidad? No Si

¢ Se facilita la comparticion de

procedimientos entre usuarios? No Si
¢ Por qué se invento esta técnica? Para obtener un gran Para permitir a los
espacio de direcciones programas y datos

lineal sin tener que comprar | dividirse en espacios de

mas memoria fisica direcciones logicamente inde-
pendientes, ayudando a la
comparticion y la proteccion

1.1. Una vez que el sistema haya estado en ejecucion por un tiempo, la memoria
se dividira en un numero de trozos, de los cuales algunos contendran
segmentos y otros huecos. Este fendmeno, llamado efecto de tablero de
ajedrez o fragmentacion externa

Segmentacion con paginacién: MULTICS

2.1. MULTICS operaba en las maquinas Honeywell 6000 y sus descendientes;
proveia a cada programa con una memoria virtual de hasta 218 segmentos
(mas de 250,000), cada uno de los cuales podria ser de hasta 65,536
palabras (36 bits) de longitud.

2.2. Si los segmentos son extensos, puede ser inconveniente (o0 incluso
imposible) mantenerlos completos en memoria principal. Esto nos lleva a la
idea de paginarlos, de manera que solo las paginas que realmente se
necesiten tengan que estar presentes.

Segmento 4 Segmento 4 (5K) (3K)
(7K) (7K) Segmento 5 Segmento 5 (10K)7
(4K) (4K)
7y
(4K)
Segmento 3 Segmento 3 Segmento 3 Segmento 5
(8K) (8K) (8K) Segmento 6 9)
(4K)
Segmento 6
Segmento 2 Segmento 2 Segmento 2 Segmento 2 (4K)
(5K) (5K) (5K) (5K)
Segmento 2
3K 3K 3K 5K
Segmento 1 Al S 2 (5K)
(8K) Segmento 7 Segmento 7 Segmento 7 Segmento 7
(5K) (5K) (5K) (5K)
Segmento 0 Segmento 0 Segmento 0 Segmento 0 Segmento 0
(4K) (4K) (4K) (4K) (4K)
(a) (b) (c) (d) ()

Figura 3-34. (a)-(d) Desarrollo del efecto de tablero de ajedrez. (¢) Eliminacion del
efecto de tablero de ajedrez mediante la compactacion.

~————36 bits ———

l l Entrada de la pagina 2

Entrada de la pagina 1

Descriptor del segmento 6 Entrada de la pagina 0
Descriptor del segmento 5 Tabla de paginas para
Descriptor del segmento 4 &l segmanto 3
Descriptor del segmento 3 _L _l_
Descriptor del segmento 2
Descriptor del segmento 1 Entrada de la pagina 2
Descriptor del segmento 0 Entrada de la pagina 1
Segmento del descriptor Entrada de la pagina 0

Tabla de paginas para el segmento 1

(a)

3 3

11

18 9 11
Direccion de memoria principal Longitud del seg-
de la tabla de paginas mento (en paginas)

Tamaiio de pagina:
0 = 1024 palabras

1 =64 palabras

0 = el segmento esta paginado
1 = el segmento no esta paginado

Bits varios

Bits de proteccion
(b)

Figura 3-35. La memoria virtual de MULTICS. (a) El segmento del descriptor apun-
ta a las tablas de paginas. (b) Un descriptor de segmento. Los nimeros son las longi-
tudes de los campos.

2.3. Cuando ocurre una referencia a memoria, se lleva a cabo el siguiente
algoritmo.
1. El numero de segmento se utiliza para encontrar el descriptor de
segmentos.
2. Se realiza una comprobacion para ver si la tabla de paginas del segmento
esta en la memoria. Si la tabla de paginas esta en memoria, se localiza. Si
no, ocurre un fallo de segmento. Si hay una violacién a la proteccion, ocurre
un fallo (trap).
3. La entrada en la tabla de paginas para la pagina virtual solicitada se
examina. Si la pagina en si no estd en memoria, se dispara un fallo de
pagina. Si esta en memoria, la direccién de la memoria principal del inicio de
la pagina se extrae de la entrada en la tabla de paginas.
4. El desplazamiento se agrega al origen de la pagina para obtener la
direccién de memoria principal en donde se encuentra la palabra.
5. Finalmente se lleva a cabo la operacion de lectura o almacenamiento.
Direccién dentro
del segmento
" NUmero Desplazamiento
Ndmero de segmento de pagina | dentro de la pagina
18 6 10
Figura 3-36. Una direccion virtual de MULTICS de 34 buts.
Direccion virtual de MULTICS
Mumero de segmento Nurrje_ro Desplazamiento
de pagina
Palabra
Descriptor Marco de pagina
Mumero de Numero Desplazamiento
segmento Segmento de pagina Tabla de Pagina
del descriptor paginas

Figura 3-37. Conversion de una direccion MULTICS de dos partes en una direccion
de memoria principal.

3.

Gompo de {0 osta
, i - entrada?
Namero de Pagina Marco de
segmento virtual pagina Proteccion Edad l
4 1 7 Lectura/escritura | 13 1
6 0 2 Sélo lectura 10 | 1
12 3 1 Lectura/escritura 2 1
0
2 1 0 Sélo ejecucion 7 1
2 2 12 Sélo ejecucion 9 1

———

Figura 3-38. Una version simplificada del TLB de MULTICS. La existencia de dos ta-
mafios de pagina hace que el TLB real sea mas complicado.

Segmentacion con paginacion: Intel Pentium

3.1.

3.2.

La memoria virtual en el Pentium se asemeja en muchas formas a MULTICS,
incluyendo la presencia de segmentacion y paginacion. Mientras que
MULTICS tiene 256K segmentos independientes, cada uno con hasta 64K
palabras de 36 bits, el Pentium tiene 16K segmentos independientes, cada
uno de los cuales contiene hasta un mil millones de palabras de 32 bits.
Aunque hay menos segmentos, entre mayor sea el tamafio del segmento
sera mas importante, ya que pocos programas necesitan mas de 1000
segmentos, pero muchos programas necesitan segmentos extensos.

El corazén de la memoria virtual del Pentium consiste en dos tablas,
llamadas LDT (Local Descriptor Table, Tabla de descriptores locales) y GDT
(Global Descriptor Table, Tabla de descriptores globales). Cada programa
tiene su propia LDT, pero hay una sola GDT compartida por todos los
programas en la computadora. La LDT describe los segmentos locales para
cada programa, incluyendo su codigo, datos, pila, etcétera, mientras que la
GDT describe los segmentos del sistema, incluyendo el sistema operativo en
Si.

Bits 13 1 2

indice

[\

0=GDTA =LDT Nivel de privilegio (0 a 3)

Figura 3-39. Un selector del Pentium.

0: Segmento de 16 bits 0: El segmento no esta en memoria
1: Segmento de 32 bits 1: El segmento esta en la memoria
———————— Nivel de privilegio (0 a 3)
0: Li esta en bytes 0: Sisltemflal
1: Li estd en paginas 1: Aplicacién

*— Tipo y proteccion del segmento

Base24a31 |G[D|o[] [ame |p[opL[s| Tipo Base 16223 |4
Base Da 15 Limite 0 a 15 0
. Direccion
32 Bits relativa

Figura 3-40. Descriptor del segmento de eddigo del Pentium. Los segmentos de datos
difieren un poco.

| Selector | Desplazamiento |

Descriptor

Direccién base 4»6)

R Limite

Otros campos

Direccidn lineal de 32 bits

Figura 3-41. Conversion de un par (selector, desplazamiento) en una direccion lineal.

Direccion lineal

Bits 10 10 12
Dir Pagina Desplazamiento
(@)
Directorio de paginas Tabla de paginas Marco de pagina
N L N L Palabra J L.
T T T T seleccionada T 7
1024
entradasT
[1" Pagina L
La entrada en La entrada en la
el directorio apunta tabla de paginas
a la tabla de paginas apunta a la palabra
(b)

Figura 3-42. Asociacion de una direccion lineal a una direceion fisica.

Usos comunes
¢ de los niveles

Nivel

Figura 3-43. La proteccion en el Pentium.

