Custom Object Storage with Consistent Search Store

Abstract:

Organizations with multiple teams generally end up with different applications that
manage it's own database interactions. This approach would be fine at a smaller scale
but as we move forward towards a large scale, the situation will become more
error-prone. Because now each application needs to either deploy experts in each team
or build expertise to make the data available, consistent, and usable at all times. This
leads to a waste of resources both in terms of computing as well as human. In addition
to that, applications need to manage Disaster Recovery (DR), migrations (if needed),
Recovery Time Objective (RTO), and Recovery Point Objective which all lead to
inconsistencies. Hence, we developed a strongly consistent centralized document
service with a consistent secondary search store.
Outline:

1. What’s the need?
Many modern organizations are trying to shape the global market. And to be at the top
of the game, it is required to build and deliver consistent features/products. Hence,
many teams are managing different services and as per their use cases, they have
different database needs. And because of that what modern organizations generally
end up with is many scattered data services, and each team/project owner has to
maintain their own resources. The proposed solution is meant to solve these problems:

Database abstraction

Connection management

Achieve multi-tenancy

Maintaining RTO and RPO as per agreement and maintenance

Centralized alerting and monitoring

Maintain required SLA (With the support of distributed caching and other
features)

e Consistent Search Store

2. Requirements:
Through careful evaluation, the following requirements are specified for the proposed
solution:-

e Data Model: supports hierarchical data structures and collections in a hierarchy.
Store your data in documents, organized into collections.



g

Query: queries can be used to retrieve individual, specific documents or to
retrieve all the documents in a collection that match your query parameters.
Queries can include multiple, chained filters and combine filtering and sorting.
strong consistency guarantees, atomic batch operations, and real transaction
support (transaction support will be optional and can be configured based on
project requirements).

Transactionally consistent local secondary indexes.

Multitenancy

Real-Time change data capture for near-real-time processing.

Transactional writes for closely interrelated (co-partitioned) data.

Consistent Schema checks.

Partial update of an object

Consistent Search store implementation

Auditing all updates to ease debugging

What we achieved with the proposed solution.
Data governance :

o Centralized service to maintain different requirements of different projects.
Hence ease of development for different teams.
Consistent document store
Highly available
Automated system to cater to RTO/RPO
o Eventual consistent search store
Database abstraction :
o Can communicate with an application of any language which supports
Protobuf communication
o Make database communication simple
Maintenance :
o Automated APIs to increase/reduce infrastructure resource
o Consolidated Monitoring, Alerting and Auditing to observe the overall
infrastructure

o O O



