
Forecasting extreme outcomes 
This document explores and develops methods for forecasting extreme outcomes, 
such as the maximum of a sample of n independent and identically distributed 
random variables. I was inspired to write this by Jaime Sevilla’s recent post with 
research ideas in forecasting and, in particular, his suggestion to write an accessible 
introduction to the Fisher–Tippett–Gnedenko Theorem. 
 
I’m very grateful to Jaime Sevilla for proposing this idea and for providing great 
feedback on a draft of this document. 

Summary 
The Fisher–Tippett–Gnedenko Theorem is similar to a central limit theorem, but for 
the maximum of random variables. Whereas central limit theorems tell us about what 
happens on average, the Fisher–Tippett–Gnedenko Theorem tells us what happens 
in extreme cases. This makes it especially useful in risk management, when we 
need to pay particular attention to worst case outcomes. It could be a useful tool for 
forecasting tail events. 
 
This document introduces the theorem, describes the limiting probability distribution 
and provides a couple of examples to illustrate the use (and misuse!) of the 
Fisher–Tippett–Gnedenko Theorem for forecasting. In the process, I introduce a tool 
that computes the distribution of the maximum n iid random variables that follow a 
normal distribution centrally but with an (optional) right Pareto tail. 
 
Summary: 

●​ The Fisher–Tippett–Gnedenko Theorem says (roughly) that if the maximum of 
n iid random variables—which is itself a random variable—converges as n 
grows to infinity, then it must converge to a generalised extreme value (GEV) 
distribution 

●​ Use cases: 
○​ When we have lots of data, we should try to fit our data to a GEV 

distribution since this is the distribution that the maximum should 
converge to (if it converges) 

○​ When we have subjective judgements about the distribution of the 
maximum (e.g. a 90% credible interval and median forecast), we can 
use these to determine parameters of a GEV distribution that fits these 
judgements 

○​ When we know or have subjective judgements about the distribution of 
the random variables we’re maximising over, the theorem can help us 
determine the distribution of the maximum of n such random variables 
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for large n – but this can give very bad results when our assumptions / 
judgements are wrong 

●​ Limitations: 
○​ To get accurate forecasts about the maximum of n random variables 

based on the distribution of the underlying random variables, we need 
accurate judgements about the right tail of the underlying random 
variables because the maximum will very likely be drawn from the tail, 
especially as n gets large 

○​ Even for data that is very well described by a normal distribution for 
typical values, normality can break down at the tails and this can 
greatly affect the resulting forecasts 

■​ I use the example of human height: naively assuming normality 
underestimates how extreme the tallest and shortest humans 
are because height is “only” normally distributed up to 2-3 
standard deviations around the mean 

○​ Modelling the tail separately (even with quite a crude model) can 
improve forecasts 

●​ This simple tool might be good enough for forecasting purposes in many 
cases 

○​ It assumes that the underlying r.v.s are iid and normally distributed up 
to k standard deviations above the mean and that there is a Pareto tail 
beyond this point 

○​ Inputs: 
■​ 90% CI for the underlying r.v.s 
■​ n (the number of samples of the underlying random variables) 
■​ k (the number of SDs above the mean at which the Pareto tail 

starts); set this high if you don’t want a Pareto tail 
○​ Output: cumulative distribution function, approximate probability density 

function and approximate expectation of the maximum of n samples of 
the underlying random variables 

●​ Request for feedback: I’m not an experienced forecaster and I don’t know 
what kind of information and tools would be most useful for forecasters. Let 
me know how this kind of work could be extended or adapted to be more 
useful! 

 
I expect the time-poor reader to get most of the value from this document by reading 
the informal statement of the Fisher–Tippett–Gnedenko Theorem, the overview of 
the generalised extreme value distribution, and the shortest and tallest people in the 
world example, and then maybe making a copy and playing around with the tool for 
forecasting the maximum of n random variables that follow normal distributions with 
Pareto tails (consulting this as needed). 
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Informal statement of the theorem 
Let  be iid random variables and let  be the 𝑋

1
, 𝑋

2
, ···, 𝑋

𝑛
𝑀

𝑛
= max {𝑋

1
, 𝑋

2
, ···, 𝑋

𝑛
}

maximum of these random variables. If  converges to a non-degenerate random 𝑀
𝑛

variable as  grows to infinity, then that limiting random variable must follow a 𝑛
generalised extreme value distribution.1 
 
Note that the theorem says that if the maximum converges, then it must converge to 
a generalised extreme value distribution. It does not say that the maximum 
necessarily converges. Contrast this with the CLT, which ensures convergence to a 
normal distribution, so long as the mean and variance are finite. There are additional 
conditions that ensure convergence, but I won’t go into them here except to say that 
it seems to me that the maximum of most commonly used distributions will 
converge.2 
 
Most of the theory is framed in terms of the maximum of random variables but can 
be adapted to apply to minima too. For example, I estimate the height of both the 
tallest and shortest people in the world. 

Generalised extreme value distribution 

Overview 
There are three types of GEV distribution: Gumbel, Fréchet and (reversed) Weibull 
distribution. They differ primarily along the following dimensions: (i) the heaviness of 
their tails; (ii) the types of underlying distributions that generate them; (iii) their 
support – that is, the values to which they assign positive (i.e. non-zero) probability. 
 
The right tail of the underlying random variables determines the right tail of the 
limiting maximum random variable since the maximum of a large number of random 
variables will likely be drawn from the right tail. Exponentially decreasing tails (e.g. 
normal, exponential distributions) produce a Gumbel distribution, which also has 
exponentially decreasing tails. An important exception is the lognormal distribution, 
which has a heavier than exponential tail, but also generates a Gumbel distribution.3 
Bounded distributions (e.g. uniform, beta distributions) produce a Weibull 
distribution, which has an upper bound – this makes sense since the maximum can’t 

3 I’ve seen this in a few sources, e.g. pg. 59 Kotz, S., & Nadarajah, S. (2000). Extreme value 
distributions: theory and applications. However, when I ran simulations with lognormal random 
variables, I actually got a Fréchet distribution (with a small but significantly positive shape parameter). 
It’s possible I didn’t run enough simulations to get convergence to Gumbel distribution (lognormal r.v.s 
can be very slow to converge due to heavier than exponential tails). 

2 One caveat: after suitable normalisation. See the appendix for more on this. 

1 Technically, the theorem applies to Mn after “suitable normalisation”. The precise details of 
normalisation are subtle, potentially confusing to unfamiliar readers and not that practically important, 
so I’ve relegated them to a more technical appendix. 
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be greater than the upper bound of the underlying random variables. Distributions 
with polynomially decreasing tails (e.g. Pareto, Cauchy distributions) produce a 
Fréchet distribution, which has a heavy right tail and a lower bound (though the lower 
bound isn’t very important in practice). 
 
Here are some example plots of GEV distributions. The first image illustrates three 
GEV densities, one of each type. The Gumbel distribution is the standard Gumbel 
distribution but the Weibull and Fréchet distributions are relatively extreme: this 
Weibull distribution has significant probability density near the upper bound and this 
Fréchet distribution has a sufficiently heavy tail for the mean to be infinite. I’ll 
describe the parameters of these distributions precisely in a later section.4 

 
The second image again shows example densities of each type of GEV distribution. 
The same Gumbel distribution is displayed but the Weibull and Fréchet distributions 
are much less extreme.5 
 

5 Here, we have again μ = 0 and σ = 1 for all three distributions. The Weibull, Gumbel and Fréchet 
distributions have ξ = -1/3, 0, 1/3, respectively. 

4 For completeness, here are the parameters of these distributions. All three have μ = 0 and σ = 1. 
The Weibull, Gumbel and Fréchet distributions have ξ = -1, 0, 1, respectively. See GEV parameters 
for an explanation of these parameters. 



 
The following table summarises some of the key features of the three types of GEV 
distribution. 
 

 Gumbel (Reversed) Weibull Fréchet 

Support 
and tails 

Unbounded support 
with relatively thin 
tails that decay 
exponentially 

Bounded from above Bounded from 
below with heavy 
right tail 

Generated 
by 

Distributions with 
exponentially 
decreasing tails, 
e.g. normal, 
exponential, 
gamma. Also 
lognormal 
distribution. 

Distributions that are 
bounded from above, 
e.g. uniform, beta. 

Distributions with 
polynomially 
decreasing tails, 
e.g. Cauchy, 
Pareto, Student’s 
t 

 
A note to avoid unnecessary confusion: the Weibull distribution that arises as a 
generalised extreme value distribution is a little different to the Weibull distribution 
found elsewhere, e.g. on Wikipedia. In other contexts, the Weibull distribution has a 
lower bound rather than an upper bound (it’s used to model minima) and is 
parameterised slightly differently. For this reason, the Weibull distribution discussed 

https://en.wikipedia.org/wiki/Weibull_distribution


here, as a type of generalised extreme value distribution, is sometimes called a 
reversed Weibull distribution. 

Applications 
The GEV distribution has been applied in several engineering and weather 
forecasting contexts, as well as to model tail risks in insurance and finance.6 For 
example, given data on the annual highest tide, one can estimate the distribution of 
the highest tide over 100 years (or more) in order to determine how high to build 
flood defences. The GEV distribution has found similar applications with extreme 
temperature (for both hottest and coldest temperatures), maximum wind speeds, 
minimum and maximum rainfall (droughts and floods), maximum earthquake 
magnitude. 
 
In most real-world applications, a GEV distribution is fitted to data of maxima or 
minima. As a concrete example, this image, taken from waterlog.info (via Wikipedia), 
shows a GEV distribution fitted to maximum monthly one-day rainfalls in October in 
Surinam: 
 

 

6 See also applications of the Gumbel, Weibull and Fréchet distributions. 
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GEV parameters 
The generalised extreme value distribution (GEV) is characterised by a cumulative 

distribution function (cdf) of the form , where  . The 𝑒−𝑡(𝑥) 𝑡(𝑥) = {
𝑒−(𝑥−µ)/σ                       𝑖𝑓 ξ=0

(1+ξ(𝑥−µ)/σ)−1/ξ   𝑖𝑓 ξ≠0

precise form of the cdf isn’t too important for forecasting applications but it’s helpful 
to understand what the distribution’s parameters are. The distribution has three 
parameters: (i) a location parameter, , which, roughly speaking, controls where the µ
centre of the distribution is located; (ii) a scale parameter, , which, roughly, controls σ
how much the distribution is stretched out; (iii) a shape parameter , which, roughly, ξ
controls the tail behaviour of the distribution. 
 
Greater  corresponds to a heavier right tail. We have a Weibull distribution when ξ

, Gumbel when , and Fréchet when . When , the right tail is ξ < 0 ξ = 0 ξ > 0 ξ ≥ 1
sufficiently heavy that the mean of the distribution is infinite and when , the ξ ≥ 1

2

variance is infinite. 
 
The Gumbel distribution is the limiting distribution of the Fréchet or Weibull 
distributions as . This is illustrated by the density plots above. All plotted ξ → 0
distributions have  and  so that we can focus on the tails and the µ = 0 σ = 1
differences between the three types of GEV distribution, which are primarily 
determined by . The Weibull, Gumbel and Fréchet distributions in the first image ξ
have , respectively. In the second image, the Weibull, Gumbel and ξ =− 1, 0, 1
Fréchet distributions have , respectively. We see that the first three ξ =− 1/3, 0, 1/3
distributions look very different but the latter three distributions look quite similar. 
Moving  closer to 0 moves the Weibull and Fréchet distributions closer to a Gumbel ξ
distribution. Although each type can look quite different, this is one of the reasons it 
makes sense to unify them as a single distribution – the GEV distribution. 
 
(Warning: Don’t confuse  and  for the mean and standard deviation – the mean µ σ
and standard deviation of GEVs (when finite) can be given in terms of  but are µ,  σ,  ξ
not equal to  and , respectively. The normal distribution is peculiar in having its µ σ
mean and standard deviation equal to its location and scale parameters.) 

Forecasting examples 
When forecasting the maximum of several iid random variables, the 
Fisher–Tippett–Gnedenko Theorem suggests that a GEV distribution could be a 
good fit. Which type is best will depend on the distribution of the underlying random 
variables. In sufficiently data-rich contexts, one can fit a GEV distribution to data to 
determine the parameter values. This often isn’t feasible for important forecasting 
questions though. The following examples illustrate the use (and misuse!) of the 
Fisher–Tippett–Gnedenko Theorem for forecasting. 



Subjective forecasting 
In many forecasting contexts, we don’t have rich data and we don’t have a precise 
sense of the distribution of the underlying random variables. We might still make use 
of a GEV distribution though to forecast the maximum given subjective estimates, 
e.g. for the median and 0.05 and 0.95 quantiles. 
 
The quantile function for a GEV distribution (with ) is ξ ≠ 0

. So if a forecaster thinks the median of  is about 𝑄(𝑝) = µ + σ
ξ ((− log 𝑝)−ξ − 1) 𝑀

𝑛

3, and the 0.05 and 0.95 quantiles (i.e. 5th and 95th percentile outcomes of ) are 𝑀
𝑛

about 1 and 10 respectively, this gives: 
 

 1 = µ + σ
ξ ((− log 0. 05)−ξ − 1)

 3 = µ + σ
ξ ((− log 0. 5)−ξ − 1)

 10 = µ + σ
ξ ((− log 0. 95)−ξ − 1)

 
We have three equations and three unknown parameters, , so we can solve µ,  σ,  ξ
these equations numerically to find the parameters (e.g. using the nleqslv function in 
R). In this case, this yields . The resulting expected µ ≈ 2. 41,  σ ≈ 1. 52,  ξ ≈ 0. 32
value is , where  is the Gamma function. 𝐸(𝑀

𝑛
) = µ + σ(Γ(1 − ξ) − 1)/ξ ≈ 3. 99 Γ

 
If a forecaster has more subjective quantile estimates, they can write down more 
quantile equations and find parameter values that minimise (e.g.) the sum of the 
squares of the differences. More heuristically, with an understanding of the GEV 
parameters and some qualitative judgements about what the distribution of the 
maximum should look like, you might be able to find a good enough fit by playing 
around with different parameter values, e.g. using the gevd functions in R. 

The shortest and tallest people in the world 
Often, we won’t have a good sense of the distribution of the maximum a priori but 
are able to make judgements about the distribution of the underlying random 
variables and we can use these to make judgements about the maximum. Here, I 
use human height as an example of how to do this and how it can go very wrong. 
 
Human height is approximately normally distributed, so the distribution of the tallest 
shortest people in the world should be related to a Gumbel distribution. I will focus on 
the shortest adult woman and the tallest adult man across North America, Europe, 
East Asia as Our World in Data and my regional adult population data source have 
good data only for these regions. I’ll refer to these regions as “NAEEA” for short. 
According to Our World in Data, across NAEEA, female height follows a normal 
distribution with mean 164.7 cm and standard deviation 7.1 cm and male height 
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follows a normal distribution with mean 178.4 cm and standard deviation 7.6 cm. So 
in this region, female height has cdf  and quantile function Φ( 𝑥−164.7

7.1 )

 and male height has cdf  and quantile function 164. 7 + 7. 1Φ−1(𝑝) Φ( 𝑥−178.4
7.6 )

, where  is the standard normal cdf. 178. 4 + 7. 6Φ−1(𝑝) Φ
 
The total adult population in NAEEA is about 2 billion, so there are about 1 billion 
adult men and 1 billion adult women across these regions. 
 
In general, if underlying data have cdf  and are of a distribution type that generates 𝐹
a Gumbel distribution, and we have  samples, then the maximum of the  samples 𝑛 𝑛

(for large ) will be approximately Gumbel-distributed with  and 𝑛 µ = 𝐹−1(1 − 1
𝑛 )

, where  is the quantile function (inverse of the σ = 𝐹−1(1 − 1
𝑛𝑒 ) − 𝐹−1(1 − 1

𝑛 ) 𝐹−1

cdf).7 
 
Then the height of the tallest man should be approximately Gumbel-distributed with 

 cm (or about 7 feet and 4 inches) and µ ≈ 178. 4 + 7. 6Φ−1(1 − 1

1×109 ) ≈ 224

 σ = 178. 4 + 7. 6Φ−1(1 − 1

𝑒×109 ) − 178. 4 − 7. 6Φ−1(1 − 1

1×109 )

. = 7. 6(Φ−1(1 − 1

𝑒×109 ) − Φ−1(1 − 1

1×109 )) ≈ 1. 22

 
The mean of a Gumbel distribution is , where  is the µ + σγ γ ≈ 0. 577
Euler-Mascheroni constant and the quantile function is  𝑄(𝑝) = µ − σ log(− log 𝑝)
(where  is the natural logarithm). This gives an expected value of log

 cm, or about 7 feet and 4.5 inches, about 6 standard 224 + 1. 22 × 0. 577 ≈ 225
deviations above the population mean. The 90% confidence interval is about 

. [223, 228]
 
The computations for the shortest woman are similar. Notice that the 
Fisher–Tippett–Gnedenko Theorem applies to maxima rather than minima, but we 
can just consider negative heights instead – the maximum of negative heights will be 
the negative of the minimum height (e.g. 

). So the negative height of the shortest max {− 1, − 2, − 4} =− 1 =− min {1, 2, 4}

woman is approximately Gumbel-distributed with 

 cm and . This gives an µ =− 164. 7 + 7. 1Φ−1(1 − 1

1×109 ) ≈− 122 σ ≈ 1. 14

expected minimum height of about 121 cm (about 4 feet), which is about 6 standard 

7 This is described here for normal random variables and for exponential random variables here but I 
think it generalises to other distributions that generate Gumbel distributions. 
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deviations below the population mean. The 90% confidence interval is about 
. [119, 123]

 
Here are the densities for the maximum and minimum height: 

 

 
 



Reality check: how tall are the tallest and shortest people in the world? It turns out 
they’re more extreme than the above calculations predict. The tallest living person in 
NAEEA is Sun Mingming, who is 236 cm (7 ft 9), which is about 7.5 standard 
deviations above the mean and 1.5 standard deviations above the expected 
maximum computed above. As very tall people go, globally and historically, Sun 
Mingming isn’t that tall. Sultan Kösen, though not in the regions considered, is 251 
cm (8 ft 3 in), which is 9.5 standard deviations above the mean, and there are plenty 
more very tall people living today and in the past. Some care is needed in 
considering cases like this: if we expand the region considered to include the whole 
world (and/or no longer living people), then we’re increasing the sample size and a 
larger sample will have a larger maximum because there are more chances to have 
large outliers. Additionally, the data for NAEEA might not be representative of the 
rest of the world. Conservatively increasing the sample size to 4 billion to account for 
the global living male population and assuming (likely incorrectly) that male height 
follows the same distribution globally as it does in NAEEA, the results don’t change 
drastically though: the expected maximum is about 226 cm (just 1 cm taller). Overall, 
the predicted maximum height seems too conservative and potentially much too 
conservative. 
 
For context, the probability of a draw from a normal distribution being 8 or more 

standard deviations away from the mean for is about , so even with 10 billion 10−15

(i.e.  draws), it’s very unlikely that a normal distribution could produce such 1010

outliers. 
 
The other end is even more extreme. I couldn’t easily find the height of the shortest 
living woman in NAEEA but there are strong reasons to think that the above 
prediction is much too conservative. Bridgette Jordan, an American who died in 
2019, was 69 cm (2 ft 3 in), which is about 13 standard deviations below the mean 
and 7 standard deviations below the expected minimum computed above. Jyoti 
Amge, from India, is the shortest living woman at 63 cm (2 ft ¾ in), about 14 
standard deviations below the mean. There are plenty more very short people living 
today. 
 
There’s a really important lesson here: you have to take the tails into account 
carefully. A normal distribution describes height for most of the population very well 
but it breaks down at the tails and in estimating extreme outcomes, the tails are 
really important because the tails determine how likely extreme outcomes are. In this 
case, the tails are heavier than those of a normal distribution, so the 
Fisher–Tippett–Gnedenko Theorem applied to normal random variables produces a 
maximum and a minimum with insufficiently heavy tails. 
 
We can do better by making the tails heavier. Here’s a pretty crude attempt to do that 
which gets pretty good results in this case. Instead of supposing height is normally 
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distributed, let’s assume it’s only normally distributed within some range of the mean 
and then has Pareto tails. Here, I will assume that height is normally distributed 
within 2 standard deviations of the mean, i.e. up to about 194 cm for men and down 
to 151 cm for women. I selected this value because of a vague comment in this blog 
post.8 (If you have better data, let me know.) 
 
We have to do some work to get reasonable-ish parameters for the tails and then 
some more to compute the resulting distribution of the maximum. The main idea is 
that by assuming both the cdf and pdf of the underlying random variables are 
continuous (at the point at which the tail begins), we pin down precisely what the 
parameters of the Pareto tail need to be. This gives us the cdf of the underlying 
random variables and we can use this to work out the cdf, pdf, and quantile function 
of the maximum. The full derivations are in the appendix. 
 
The resulting 90% CI for maximum height in 1 billion men is  and the mean [252, 269]
is about 259 cm. The result is probably too high: the tallest man in the world is 251 
cm, just below our 90% CI for the tallest man in NAEEA and the tallest man in 
NAEEA is only 236 cm. The result for the shortest woman is still not extreme enough 
though: the 90% CI is about  with a mean of about 90 cm (original estimate: [80, 96]
mean: 121; 90% CI: [119,123]). Recall that the shortest woman in the world is 63 cm 
and the shortest woman in NAEEA was, until 2019, 69 cm. This is indicative of there 
being more very short people than very tall people, so that normality breaks down 
closer to the mean on the left tail than the right tail and/or the left tail decays even 
more slowly than the right tail. 
 
Here are the resulting densities for male height, female height, and maximum male 
height, and minimum female height: 

8 “The normal distribution describes heights remarkably well near the mean, even a couple standard 
deviations on either side of the mean.” 
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Notice that these densities don’t look that different to the normal densities. But the 
resulting densities for maximum and minimum heights look very different to the 
previous densities for maximum and minimum heights. 
 



 

 
These aren’t perfectly smooth because they’re plotted from simulations (described in 
the appendix), but don’t worry about that – there’s nothing weird going on here. 
 
The results depend on the choice of where the Pareto tail starts (which I selected as 
2 standard deviations from the mean, after very little thought or research). The 
following table shows how sensitive the results for the tallest man are to this choice. 
 is the point at which the Pareto tail starts, given in terms of the mean height (178.4 𝑥‾



cm for men and 164.7 cm for women) and some multiple of standard deviations of 
height (7.6 cm for men and 7.1 cm for women). For greater values of , the Pareto 𝑥‾
tail starts later, and the resulting distribution of the tallest male height is less extreme 
and the resulting distribution of shortest female height is less extreme. 
 
 

 𝑥‾ Expected height of 
tallest man (cm) 

90% CI  𝑃(𝑋
𝑖

≥ 𝑥‾)

 µ + 1. 5σ 279  [269, 293] 6.7% 

 µ + 2σ 259  [252, 269] 2.3% 

 µ + 2. 5σ 246  [241, 254] 0.62% 

 µ + 3σ 238  [234, 245] 0.13% 

 µ + 4σ 229  [226, 234] 0.003% 

 µ + 5σ 226  [223, 229] 0.0000294% 

 
 

 𝑥‾ Expected height of 
shortest woman (cm) 

90% CI  𝑃(𝑋
𝑖

≤ 𝑥‾)

 µ − 1. 5σ 71  [57, 80] 6.7% 

 µ − 2σ 90  [80, 96] 2.3% 

 µ − 2. 5σ 101  [94, 107] 0.62% 

 µ − 3σ 109  [103, 113] 0.13% 

 µ − 4σ 117  [113, 120] 0.003% 

 µ − 5σ 120  [117, 123] 0.0000294% 

 
We see that the results are quite sensitive to the choice of where the Pareto tail 
starts, mainly up to 3 or 4 standard deviations away from the mean. By 5 standard 
deviations above the mean, the results are almost identical to the original prediction 
(for men: (mean: 225, 90% CI: [223,228]); for women: (mean: 121, 90% CI: 
[119,123])). I imagine choosing where the Pareto tail should start will often be 
challenging in practice. To get a sense of what a reasonable choice for the start of 
the Pareto tail might be, the right hand column shows the probability of a randomly 



selected individual lying in the Pareto tail, i.e. the proportion of the population that 
lies in the Pareto tail. 

Forecasting tool for the maximum of n iid random variables that 
follow normal distributions with optional Pareto tails 
This google sheet can compute the cdf and quantile function of the maximum of n iid 
random variables that follow normal distributions up to some point  with a Pareto tail 𝑥‾
beyond this point. It also estimates the pdf and expected value of the maximum 
(though I’d recommend other methods for high stakes decisions). 
 
As inputs, the sheet requires: 

●​ 90% CI for the underlying r.v.s (0.05 and 0.95 quantiles) 
●​ The number of samples of the underlying random variables, n 
●​ The number of SDs above the mean at which the Pareto tail starts (i.e. k such 

that  𝑥‾ = µ + 𝑘σ
 
The Pareto tail is essentially optional: set k to be very high for a negligible Pareto tail 
(even  is usually enough). 𝑘 = 8
 
The sheet calculates the mean and standard deviation of a normal distribution that 
fits the (symmetric) 90% CI provided by the user. Note that this is uniquely 
determined: there is precisely one normal distribution that fits a given CI. It then 
calculates the Pareto parameters that produce a Pareto tail that starts at  and is 𝑥‾
continuous with the normal cdf and pdf. This is also uniquely determined: there is 
precisely one Pareto tail that starts at a given  and is continuous with a given 𝑥‾
normal cdf and pdf at that point.  
 
The normal and Pareto parameters determine the cdf and quantile function of the 
underlying random variables we’re maximising over. The sheet computes the cdf and 
quantile function of the maximum of n such random variables using the cdf of the 
underlying random variables, and it uses these to approximate the density and 
expected value of the maximum. These estimates are crude and may not be reliable. 
However, in all the computations I carried out in the process of writing this document, 
the expected value of the maximum estimated by the sheet was equal to the actual 
expected value computed more robustly in R, when rounded to the nearest integer 
(i.e. the nearest cm in the height example).9 
 
More details of the derivations are in the notes in the sheet and in the appendix. 

9 The beauty of Google sheets is in its simplicity, user-friendliness and ease of shareability. One can 
do much more in R or other programming languages though, so I’d recommend using one of those if 
more sophisticated or robust analysis is required. 

https://docs.google.com/spreadsheets/d/1J4S_u1YCjhvaayPp1F2V941h42Z9ikpI_cYbnxgV5rg/edit#gid=0


Conclusion 
Forecasting extreme outcomes is important because we often want to ensure 
robustness to extreme outcomes, not just typical or likely outcomes (e.g. we want 
our flood defences to be tall enough to protect us from the worst floods of their 
lifetime, not just most typical floods). The Fisher–Tippett–Gnedenko Theorem 
provides some guidance for forecasting the maximum of a large number of random 
variables by telling us that this will converge to a generalised extreme value 
distribution, if it does indeed converge. This gives forecasters a good first place to 
look when forecasting extreme events, especially in data rich contexts. 
 
However, forecasting extreme outcomes is really hard because results are very 
sensitive to the tails. The height example showed that naively assuming that human 
height is normally distributed and applying the Fisher–Tippett–Gnedenko Theorem 
yields too conservative results. And height is often used as a prime example of 
something that’s normally distributed! Adding Pareto tails might be a useful tool for 
accounting for heavier than normal tails, e.g. via this spreadsheet. The most 
challenging part of using this method is deciding where the Pareto tail should start 
(i.e. where normality breaks down), and I imagine this could be quite difficult to pin 
down accurately and precisely without lots of data. 
 
Finally, I’m not an experienced forecaster and I don’t know what kind of information 
and tools would be most useful for forecasters. Let me know how this kind of work 
could be extended or adapted to be more useful!  

https://docs.google.com/spreadsheets/d/1J4S_u1YCjhvaayPp1F2V941h42Z9ikpI_cYbnxgV5rg/edit#gid=0


Appendix 
This is more technical. 

Pareto tails 
We wish to replace the right tail of a normal distribution with a Pareto tail. We can 
work out reasonable-ish parameters for the tail from the cdf of the Pareto distribution: 

, where  and  are the parameters to be determined. In order to 𝐻(𝑥) = 1 − (
𝑥

𝑚

𝑥 )α 𝑥
𝑚

α

determine  and , we need to set two constraints: one per parameter. There are 𝑥
𝑚

α

two very natural constraints: (1) the Pareto cdf should equal the normal cdf at the 
point at which the Pareto tail begins (i.e. the cdf is continuous); (2) the Pareto pdf 
should equal the normal pdf at the point at which the Pareto tail begins (i.e. the pdf is 
continuous). Once we impose these constraints,  and  will be uniquely 𝑥

𝑚
α

determined. 
 
Let  and  denote the standard normal cdf and pdf, respectively. Given a Φ ϕ = Φ'
normal distribution with mean  and standard deviation , we impose the following µ σ
constraints: 
 

 𝐻(𝑥‾) = 1 − (
𝑥

𝑚

𝑥‾
)α = Φ( 𝑥‾−µ

σ )

 𝐻'(𝑥‾) =
α𝑥

𝑚
α

𝑥‾
α+1 = ϕ( 𝑥‾−µ

σ )

 
Solving these for  and  yields: 𝑥

𝑚
α

 

 α = 𝑥‾ϕ( 𝑥‾−µ
σ )/(1 − Φ( 𝑥‾−µ

σ ))

 𝑥
𝑚

= 𝑥‾(1 − Φ( 𝑥‾−µ
σ ))1/α = 𝑥‾(1 − Φ( 𝑥‾−µ

σ ))
(1−Φ( 𝑥‾−µ

σ ))/(𝑥‾ϕ( 𝑥‾−µ
σ ))

 
In the human height example, with , this yields the following 𝑥‾ = µ + 2σ = 193. 6
parameters for male height: 
 

 α = 193. 6ϕ( 193.6−178.4
7.6 )/(1 − Φ( 193.6−178.4

7.6 )) ≈ 60. 5

 𝑥
𝑚

= 193. 6(1 − Φ( 193.6−178.4
7.6 ))1/60.5 ≈ 182

 
Male height has cdf  such that  is equal to the normal cdf for  and is equal 𝐹 𝐹(𝑥) 𝑥 < 𝑥‾

to the Pareto cdf for . 𝑥 ≥ 𝑥‾
 



Female height is similar, except the Pareto tail is on the left (and is therefore a 
reflected version of a right Pareto tail). There are multiple ways to adapt the method 
for a right Pareto tail to a left Pareto tail. I think the most straightforward in this case 
is to give female height a right tail and run the same calculations as above, and then 
reflect everything about the centre of the normal distribution, so that the Pareto tail is 
on the left.10 For female height, we have , which yields  𝑥‾ = µ + 2σ = 178. 9 α ≈ 60
and . Reflecting the resulting cdf about the centre, , we have that 𝑥

𝑚
≈ 179 µ = 164. 7

female height is normally distributed down to  and 𝑥 = µ − 2σ = 2µ − 𝑥‾ = 150. 5

has cdf  such that  is equal to the normal for  and cdf equal to  for 𝐺 𝐺(𝑥) 𝑥 > 𝑥 (
𝑥

𝑚

2µ−𝑥 )α

. 𝑥 ≤ 𝑥

Maximum and minimum heights of Normal-Pareto random variables 
We now have the cdfs of male and female height and we can use these to compute 
the cdfs, pdfs and quantile functions of maximum and minimum height. Denote the 
male height cdf by  with pdf . The maximum of  iid samples has cdf 𝐹 𝑓 = 𝐹' 𝑛

 

  𝐹
𝑛
(𝑥) = 𝑃({𝑋

1
≤ 𝑥} ∩···∩ {𝑋

𝑛
≤ 𝑥}) =

𝑖=1

𝑛

∏ 𝑃({𝑋
𝑖

≤ 𝑥}) = 𝐹(𝑥)𝑛

 
The first equality follows from the fact that if the maximum of  random variables is 𝑛
less than , then each of the  random variables must be less than . The second 𝑥 𝑛 𝑥
equality follows from the independence of the samples and the third equality from the 
fact that they’re identically distributed.  
 

By the chain rule, the maximum male height has pdf . The 𝑓
𝑛
(𝑥) = 𝑛𝑓(𝑥)𝐹(𝑥)𝑛−1

quantile function is the inverse of the cdf: , where  is the 𝑄
𝑛
(𝑝) = 𝐹−1(𝑝1/𝑛) 𝐹−1

quantile function for height, and is equal to the normal quantile function or Pareto 

quantile function at , depending on whether  is in the Pareto tail or not, i.e. 𝑝1/𝑛 𝑝1/𝑛

whether . 𝑝1/𝑛 ≥ 𝐹(𝑥‾)
 
90% CIs (and other CIs) can be computed directly from the quantile functions. For 

example  since the Pareto 𝑄
109(0. 05) = 𝐹−1(0. 0510−9

) = 𝑥
𝑚

(1 − 0. 0510−9

)−1/α ≈ 252

quantile function is  and  is sufficiently high that it 𝑄
𝑃𝑎𝑟𝑒𝑡𝑜

(𝑝) = 𝑥
𝑚

(1 − 𝑝)−1/α 0. 0510−9

10 One could instead put the tail on the left from the start, which would require slightly different 
equations for the Pareto tail and to determine the parameters of the Pareto tail. The end result is the 
same. 



corresponds to a point in the Pareto tail (as opposed to the normal body of the 

distribution), i.e. . That is, the lower bound of the 90% CI is 252. 𝐹(𝑥‾) < 0. 0510−9

 
Similarly, with female height following cdf  and pdf , the minimum of  iid 𝐺 𝑔 = 𝐺' 𝑛
samples has cdf 
 

 𝐺
𝑛
(𝑥) = 𝑃( min {𝑋

1
, ···, 𝑋

𝑛
} ≤ 𝑥}) = 1 − 𝑃( min {𝑋

1
, ···, 𝑋

𝑛
} > 𝑥) = 1 − (1 − 𝐺(𝑥))𝑛

 

The minimum female height has pdf . However, in 𝑔
𝑛
(𝑥) = 𝑛𝑔(𝑥)(1 − 𝐺(𝑥))𝑛−1

practice, it’s often easier just to work with the maximum and then reflect the results in 
the centre of the normal body at the end (i.e. map  to ). 𝑥 2µ − 𝑥
 
The means of the maximum and minimum height can be computed from the pdfs 

 and  by computing the relevant 𝑓
𝑛
(𝑥) = 𝑛𝑓(𝑥)𝐹(𝑥)𝑛−1 𝑔

𝑛
(𝑥) = 𝑛𝑔(𝑥)(1 − 𝐺(𝑥))𝑛−1

expectation integrals (perhaps analytically—I haven’t tried—or definitely 
numerically). This method is a little fiddly though since the  and  have normal 𝐹,  𝑓,  𝐺 𝑔
components and Pareto components. Instead, I estimated the means via 
simulations. The idea is to take a large sample of random variables with cdf  (i.e. a 𝐹

𝑛

sample of maxima) and this sample will approximately follow the right distribution. In 
particular, its mean should be close to the mean of the maximum male height. You 
can also estimate quantiles this way by computing quantiles of the random sample 
(quantiles estimated this way were very close to the exact quantiles computed as 
above). 
 
In general, to get a random sample following cdf , you can take a random sample 𝐿
following a uniform distribution on  (e.g. with the runif function in R) and then [0, 1]

apply the quantile function  to the sample. For the height example, I took a 𝐿−1

uniform random sample of size 10,000. I then fed this into the quantile function for 

the maximum height of 1 billion men, i.e. . With extremely high 𝑄
109(𝑝) = 𝐹−1(𝑝10−9

)

probability, we don’t need to worry about the normal component of  because  is 𝐹 𝑝10−9

sufficiently high that it will lie in the Pareto tail, even for small values of . So, after 𝑝
checking that the smallest draw from the sample will lie in the Pareto tail (it 
essentially always will in this example) we can raise each element of the uniform 

random sample to the power , pass these through the Pareto quantile function 10−9

and this gives us a large sample of maximum heights. The reported means were 
computed by taking the mean of such samples. The plotted densities of maximum 
and minimum heights are density plots of such samples. 

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Uniform.html


Formal statement of the Fisher–Tippett–Gnedenko Theorem 
 
Let  be iid random variables with cdf  and let . 𝑋

1
, 𝑋

2
, ···, 𝑋

𝑛
𝐹 𝑀

𝑛
= max {𝑋

1
, 𝑋

2
, ···, 𝑋

𝑛
}

If there exist two sequences of real numbers  with  and a 𝑎
𝑛
, 𝑏

𝑛
𝑎

𝑛
> 0

non-degenerate cdf , such that  for all  at which  is 𝐺
𝑛→∞
lim 𝑃(

𝑀
𝑛
−𝑏

𝑛

𝑎
𝑛

≤ 𝑥) = 𝐺(𝑥) 𝑥 𝐺

continuous, then  follows a generalised extreme value distribution. That is, if there 𝐺

are suitable normalising sequences  such that  converges in distribution 𝑎
𝑛
, 𝑏

𝑛

𝑀
𝑛
−𝑏

𝑛

𝑎
𝑛

to some non-degenerate random variable, then that random variable must follow a 
generalised extreme value distribution. 

Normalisation 
This section is intended to make the formal statement clearer for the curious but 
unfamiliar reader. I don’t think it’s practically important. 
 

The sequences  and  and the term  perhaps look daunting but they’re just 𝑎
𝑛

𝑏
𝑛

𝑀
𝑛
−𝑏

𝑛

𝑎
𝑛

a technical requirement to ensure convergence. They’re exactly analogous to the 

term  in the classical CLT with normalising sequences  and  𝑛
𝑋

𝑛
‾ −µ

σ 𝑐
𝑛

= σ/ 𝑛 𝑑
𝑛

= µ

(in this formulation,  is independent of ).  𝑑
𝑛

𝑛

 
The unnormalised sample mean converges to the degenerate random variable that 
always takes the value of the population mean but normalisation of the sample mean 
prevents it converging to this degenerate random variable. Similarly, without 
normalisation, the maximum,  will converge to the degenerate random variable 𝑀

𝑛

that only ever takes the value of the population maximum or to infinity. (More 
precisely,  converges in probability to , which may be 𝑀

𝑛
sup{𝑥 :  𝑃(𝑋

𝑖
≤ 𝑥) < 1}

infinite.)  
 
In many applications, we want to know about the distribution of the sample mean or 
maximum, not just the numbers they converge to, and this requires non-zero 
variance. For the sample mean, we obtain that by multiplying the by :  𝑛

. The factor  is just large enough to make the 𝑉𝑎𝑟( 𝑛𝑋
𝑛

‾ ) = 𝑛𝑉𝑎𝑟(𝑋
𝑛

‾ ) = σ2 𝑛

variance non-zero as the sample size grows and just small enough to prevent the 
variance blowing up to infinity. The sequence  plays this role for the sample 𝑎

𝑛

maximum. 
 

https://en.wikipedia.org/wiki/Convergence_of_random_variables#Convergence_in_distribution
https://en.wikipedia.org/wiki/Central_limit_theorem#Classical_CLT


Less formally, if   converges in distribution to , then we can say that 
𝑀

𝑛
−𝑏

𝑛

𝑎
𝑛

𝐺𝐸𝑉(0, 1, ξ)

 is approximately GEV distributed with scale parameter , location parameter , 𝑀
𝑛

𝑎
𝑛

𝑏
𝑛

and shape parameter , for large . This follows from the fact that if , ξ 𝑛 𝑋 ∼ 𝐺𝐸𝑉(µ, σ, ξ)
then  (described here and readily derived from the 𝑚𝑋 + 𝑏 ∼ 𝐺𝐸𝑉(𝑚µ + 𝑏, 𝑚σ, ξ)
GEV cdf). 
 

https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution#Related_distributions
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